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Abstract

A conceptual and analytic framework for understanding relationships among traits, states,

situations, and behaviours is presented. The framework assumes that such relationships

can be understood in terms of four questions. (1) What are the relationships between trait

and state level constructs, which include psychological states, the situations people

experience and behaviour? (2) What are the relationships between psychological states,

between states and situations and between states and behaviours? (3) How do such state

level relationships vary as a function of trait level individual differences? (4) How do the

relationships that are the focus of questions 1, 2, and 3 change across time? This article

describes how to use multilevel random coefficient modelling (MRCM) to examine such

relationships. The framework can accommodate different definitions of traits and disposi-

tions (Allportian, processing styles, profiles, etc.) and different ways of conceptualising

relationships between states and traits (aggregationist, interactionist, etc.). Copyright #

2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Relationships among trait, states and situational influences have been an important focus of

psychological science for the past 100 years. Initially, and for the better part of the 20th

century, trait theory held sway. Many psychologists believed that individual differences in

thought, feeling and behaviour could be explained in terms of individual differences in

traits, ‘pre-dispositions to respond’ that were more or less permanent and unchanging.

Nevertheless, although trait theories were sometimes elegant and theoretically compelling,

by the 1960s and 1970s, many psychologists —most notably Walter Mischel—began to

question their utility. In the eyes of many, trait theories had not fared well in the laboratory

and other research settings. Many psychologists began to believe that people were simply
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too inconsistent across time and situations to consider traits as viable explanations for

differences in how people thought, felt, and behaved at any particular point in time.

This increased emphasis on situational inconsistency was accompanied by the

development of numerous theories that concerned relatively specific relationships between

relatively specific situational influences and relatively specific outcomes (behaviours,

thoughts, feelings, etc.). Moreover, much of the research on such theories consisted of

laboratory studies done by social psychologists. Although perhaps less elegant and

sweeping than trait theories, these more situationally focused theories had (apparently) the

data on their side. For these theorists, failures to find consistent relationships between traits

and outcomes across different situations were viewed as confirmations of the limits of trait

models.

Despite the rise of situationism, the trait theoretical position remained alive, and

considerable research and theory debated whether personality characteristics should be

conceptualised as traits or as situationally determined states (e.g. Block, 1977; Epstein,

1979; Kenrick & Funder, 1988). Eventually, there was increased interest in models that

acknowledged the importance of situational influences while acknowledging the

importance of traits (e.g. Funder, 1991; Magnusson, 1990). Some of these integrated

models are referred to as ‘interactionist’ because they describe the combined influence of

trait and situational level constructs. Moreover, approaches that consider traits and

situational (or state) measures simultaneously (whether labelled as interactionist or not)

represent an important focus of contemporary research on personality.

Much of the research on situationally determined personality states falls (broadly) into

what is frequently referred to as studies of ‘within-person variability’. Such research is

concerned with understanding in what ways people vary and the significance of this

variability. To some, personality is defined in terms of such within-person relationships

(e.g. Cervone, 2005; Mischel & Shoda, 1999), and to such theorists, traits per se are not

useful constructs because they do not represent meaningful structures. For others, traits

reflect or are defined in terms of states, such as Fleeson’s research on traits as density

distributions of states (e.g. Fleeson, 2001).

Regardless of their focus, studies of within-person variability require multiple

observations, and analysing the data structures created by such studies is the focus of

this article. Although models that take into account within-person inconsistency may have

greater potential explanatory power than trait models, the trait tradition has an important

advantage. The conceptual and analytic frameworks needed to frame questions and guide

analyses for examining trait models have been available for some time, whereas this is not

the case for models incorporating within-person variability. For example, questions about

the validity of the Five Factor Model are frequently framed in terms of various types of

factor analyses (e.g. John & Srivastava, 1999), and the results of these analyses are used to

answer such questions. Although analyses of trait models do not focus exclusively on

factor analyses, factor analysis and the model underlying it are widely used and constitute a

conceptual and analytic framework within which researchers can pose and answer

questions about psychological traits.

In contrast, the conceptual and analytic frameworks needed to frame questions and guide

analyses are not as well understood for state level models (the term that is used in this

article to describe models that incorporate or rely upon within-person variability). This

relative underdevelopment may be due to the relative newness of state level models and to

differences in the data structures required by state and trait level models. State level (and

interactionist) models require multilevel data structures, whereas analyses of traits per se
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Traits and states 791
require single level data structures, and most personality researchers have more training in

and experience with single level data structures. Moreover, the techniques needed to

analyse multilevel data structures have not been widely available or readily accessible for

that long. Regardless, for research to progress on models of state level phenomena and

within-person variability broadly defined, a framework within which questions can be

posed and be answered is needed, and this article presents such a framework.

The proposed framework is not intended to replace existing theory and research but to

complement it by providing: (1) a comprehensive framework within which questions about

traits, states, and state level measures can be framed, and (2) an integrated strategy that can

be used to guide the analyses needed to answer such questions. The term comprehensive

refers to the fact that many questions about relationships among states and traits can be

described using the proposed framework. The term integrated refers to the fact that many of

the analyses needed to answer such questions can be done using a single data analytic

technique.

This conceptual framework and analytic strategy are needed because the types of

questions personologists pose about traits and state level measures and the types of data

that are usually collected to examine such questions can be quite complex. Multilevel data

structures with multiple measures and large numbers of observations are increasingly

popular, and such data structures can present a bewildering array of options. A framework

that provides a way to classify questions and hypotheses in terms of the type of

relationships being examined while providing an integrated analytic strategy should help

scholars who are familiar with these issues as well as those who are not. The framework

may help experienced scholars by providing themwith a more efficient and effectivemeans

of analysing data and communicating results. For less experienced scholars, the framework

may help by providing some guidance as to how to pose questions about states and traits

and how to collect and analyse the data needed to answer such questions.

Other frameworks for examining situationally determined states have been proposed. In

fact, a recent issue of this Journal (Van Mechelen & De Raad, 1999) was devoted to

studying personality and situations. The present framework is not intended to replace this

work; it is meant to complement it, and relationships between the present framework and

some of the existing approaches to this topic are discussed following the presentation of the

present framework.

THE FRAMEWORK

The present framework relies on fairly traditional definitions of psychological traits and

states (e.g. Spielberger, 1972) and state level measures. Broadly speaking, traits are

presumed to be relatively enduring psychological characteristics that influence people’s

thoughts, feelings and behaviours. The phrase ‘relatively enduring’ refers to the fact that

although traits may change across time (e.g. across one’s life), within some prescribed

period of time (e.g. a month) they are fairly stable. Nevertheless, the present framework

makes no assumptions about the stability of traits per se. If researchers assume that traits

change across some specific time (e.g. Hertzog & Nesselroade, 1987), they need to collect

data that allow such changes to be modelled.

Within the proposed framework, traits (or more broadly, dispositions) can be defined in

terms of continuous measures, categorical measures and combinations of continuous and

categorical measures. The framework allows for the inclusion of ‘trait level’ measures such

as sex, race, biologically and culturally based measures, and so forth that are not formally
Copyright # 2007 John Wiley & Sons, Ltd. Eur. J. Pers. 21: 789–810 (2007)
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traits but can be modelled in the same ways traits are modelled. Moreover, as discussed in

sections following the presentation of the general model, the present framework also

provides a basis for classifying and categorizing individuals based on patterns of state level

relationships such as the cognitive-affective processes suggested by Mischel and Shoda

(1999).

In contrast to traits, states (and state level measures) are presumed to change across time

and situations. Such measures include psychological states themselves (sometimes defined

in parallel to a trait level measure, e.g. state and trait anxiety), behaviours and situational

variables (including how situations are perceived). The framework makes no assumption

about the period of time over which a state or state level measure exists. State level

measures can be continuous or categorical, or a combination of continuous and categorical

measures.

For present purposes, relationships among traits, states and situational variables will be

discussed in terms of four primary questions.
1. T
Cop
he first question concerns relationships between trait and state level measures such as

relationships between traits and states per se (e.g. between trait and state anxiety),

relationships between traits and behaviours (e.g. trait anxiety and test performance)

and relationships between traits and individual differences in the situations people

encounter or chose (e.g. trait anxiety and the occurrence of stress producing situations).
2. T
he second question concerns state level relationships between or among state level

measures such as relationships between states (e.g. state anxiety and self-awareness),

relationships between states and situations (e.g. state anxiety and stress producing

situations) and relationships between situations and behaviours (e.g. performance under

different conditions).
3. T
he third question concerns how state level relationships vary as a function of trait level

measures (i.e. how trait level measures moderate state level relationships). For example,

are individual differences in neuroticism related to how strongly people react to stress

producing situations?
4. T
he fourth question concerns how any of the types of relationships covered in questions

1, 2 and 3 change across time. For example, are relationships between state anxiety and

stress producing situations the same for people in early and late adulthood? It is

important to note that questions of this type can be addressed controlling for changes in

traits across time.

These questions were chosen because they represent some of the critical issues

addressed by contemporary personality theory and research. Regardless of the specific

model, many of the issues addressed by many theories can be couched in terms of these

four questions. For example, to illustrate the operation of their Cognitive-Affective

Personality System, Mischel and Shoda (1999, p. 202) discuss how rejection-sensitive

people perceive situations differently and react differently than those who are not rejection

sensitive. Within the present framework, such a possibility represents how state level

relationships (and possibly means, depending upon how perceptions of situations are

defined) vary as a function of trait level characteristics (questions 1 and 3 above). They

further discuss how such relationships may change across time (question 4 above).

The present framework can also address some of the questions posed by more traditional

trait models. For example, Epstein (1979) argued that one reason researchers frequently

find weak relationships between traits and state level (or situationally based) measures is

that not enough state level measures are collected to overcome measurement error. As
yright # 2007 John Wiley & Sons, Ltd. Eur. J. Pers. 21: 789–810 (2007)
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discussed in a separate section below on aggregation analyses, within the present

framework, trait-state relationships can be examined controlling for measurement error.

This article is not intended to demonstrate the superiority of any particular model of

personality over any other; rather, it is intended to provide a framework to guide and

structure the analyses of relationships among states, traits, behaviours and situations,

regardless of the specific model under investigation. The framework rests on three

assumptions. (1) Relationships among states, traits, situations and behaviours are

inherently multilevel phenomena with state level phenomena representing one level of

analysis and trait level phenomena representing another. (2) The best way to study such

relationships is by taking multiple assessments of individuals across time and situations.

(3) Such multilevel data structures need to be analysed with techniques specifically

designed for multilevel data.

I will discuss a class of techniques known as multilevel random coefficient modelling

(MRCM), sometimes described as hierarchical linear modelling. It is probably best to

describe multilevel analyses as MRCM (or some variant thereof) rather than as hierarchical

liner modelling, which is the name of a popular MRCM programme (Kreft & de Leeuw,

1998). For a discussion of a related topic, multilevel analyses of daily process studies, see

Affleck, Zatura, Tennen, and Armeli (1999), and for a discussion of the use of multilevel

modelling to study personality see Nezlek (2007).

This article describes how to use MRCM to examine relationships among states, traits,

situations and behaviours. Although some technical details are covered out of necessity,

every effort has been made to highlight conceptual and substantive matters. The relative

advantages of MRCM over traditional ordinary least squares (OLS) analyses are described

briefly, the basic techniques of MRCM are presented, and MRCM analyses of state-trait

relationships are outlined. This is followed by discussion of issues that arise when

conducting MRCM analyses. This article is not intended for the statistically sophisticated

reader; rather, readers need to be familiar only with traditional OLS techniques such as

regression and analysis of variance. Nevertheless, readers who are unfamiliar with MRCM

may want to consult some basic multilevel modelling texts (e.g. Bryk & Raudenbush,

1992; Kreft & de Leeuw, 1998; Snijders & Bosker, 1999) or discussions of multilevel

analyses of the types of data frequently collected by personality psychologists (e.g. Nezlek,

2001).

MULTILEVEL ANALYSES

Basically, a multilevel structure exists whenever multiple observations are collected that

are nested within observations at another level. For present purposes, this means that

multiple observations are collected for numerous individuals, and these multiple

observations constitute what I will refer to as ‘state level’ measures. Some theorists

might prefer the label ‘situational level’, and such a label would not be inaccurate. State

level observations may be linked to specific events or may be collected following the

passage of a certain period of time, what Wheeler and Reis (1991) described as event- or

interval-contingent data collection. I refer to the collected data that describe individuals as

‘trait level’ measures, even though they may not be traits per se.

With such data structures, trait level measures can be used to examine trait level

phenomena, and state level measures can be used to examine state level phenomena.

Moreover, the two types of measures can be analysed in conjunction to examine

relationships between traits and mean states and to examine how trait level measures
Copyright # 2007 John Wiley & Sons, Ltd. Eur. J. Pers. 21: 789–810 (2007)
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moderate state level relationships. It is important to keep in mind that within multilevel

data structures, relationships at different levels of analysis are mathematically independent

and can be conceptually independent. That is, two constructs may covary negatively at the

state level while they covary positively at the trait level, they may covary positively at the

state level and negatively at the trait level, and so forth (e.g. Cervone, 2005; Nezlek, 2001;

Tennen & Affleck, 1996).

There is an emerging consensus that such multilevel data structures need to be analysed

with techniques specifically designed for multilevel data, techniques known collectively as

MRCM (e.g. Bryk & Raudenbush, 1992; Kenny, Kashy, & Bolger, 1998; Kreft & de

Leeuw, 1998; Nezlek, 2001). One way to think of these analyses is as a series of

hierarchically nested regression equations in which the coefficients from one level of

analysis become the dependent measures at the next level of analysis. For example, mean

states can be represented by the intercept of an equation, and relationships between this

intercept and trait level measures can be examined. Or, a state level relationship between a

state and a situational characteristic can be represented by a coefficient (referred to as a

slope), and relationships between this slope and trait level measures can be examined.

Technically, MRCM analyses rely on one equation including terms from all levels of

analysis, but following the treatment of Bryk and Raudenbush, for explanatory purposes,

the analyses are conceptualised in terms of a nested design.

Such analyses beg questions about why one should use MRCM when (conceptually) it

would appear to be just as appropriate to conduct standard OLS regression analyses for

each person and use these coefficients as dependent measures in another analysis. There are

numerous reasons for this, the most important of which has to do with the way in which

OLS analyses model error. Assume a study in which a set of observations is collected for

each person. In most studies of this type, little importance is placed on the specific

occasions when measures are collected. Measures may be collected so that certain

situations are represented (e.g. home vs. work), but typically it does not matter too much

which specific occasions are measured. The assumption is that occasions are randomly

sampled from the universe (or universes) of possible occasions.

Within such a study, coefficients for an individual estimated from one set of observations

should be similar to coefficients based on another set of measures, although it is not likely

that the two sets of coefficients will be identical. That is, there is some error associated with

the sampling of occasions, and therefore there is random error is associated with the

estimates of state level coefficients. It is the random error associated with the sampling of

observations that creates problems for multilevel OLS analyses. For example, if OLS

regression analyses are used to estimate within-person coefficients (intercepts or slopes),

and such coefficients are used as dependent measures in a between-person analysis, the

random error associated with these estimated coefficients is not taken into account.

Moreover, this is not simply a matter of reliability, it is a matter of how error is modelled in

an analysis. OLS analyses cannot estimate two related error terms simultaneously, and

because of this, they provide less accurate parameter estimates than comparable MRCM

analyses. The relative advantages of MRCM over OLS for the analysis of multilevel data

structures commonly collected by personality and social psychologists are discussed in

more detail in Nezlek (2001).

MRCMmodels and analyses are described using the nomenclature that is fairly standard

for multilevel analysis. This includes specific terms (e.g. level 1 not lower level) and

specific letters (e.g. b not b or B). Although potentially cumbersome at first, the use of these

conventions facilitates communication. Multilevel analyses are inherently more complex
Copyright # 2007 John Wiley & Sons, Ltd. Eur. J. Pers. 21: 789–810 (2007)
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than most single level analyses, and the use of different terms and symbols by different

authors to refer to the same entities is likely to increase more than decrease readers’

confusion.

The analytic techniques described in this article are all available in the programme HLM

(Version 6; Raudenbush, Bryk, Cheong, & Congdon, 2000), and all the analyses described

in this article were conducted using this programme. These analyses could have also been

conducted using other multilevel programmes such as MLwiN (Rabash et al., 2000), a

multilevel module in LISREL 8; SAS PROC MIXED (Singer, 1998), and others. Some of

the terms and symbols may vary from programme to programme, but for the most part, the

terms used here should provide readers a good introduction. Finally, many of the analytic

conventions (e.g. precision weighting—discussed later) used by HLM are also used by

other programmes. That is, when the same models are specified, different programs can

give identical results. This article describes results from HLM analyses because HLM is a

popular multilevel programme.

Relationships between traits and state level measures

The first type of relationship to be considered is that between traits and means of state level

measures. Examining such relationships is illustrated by the analysis of relationships

between traits and psychological states, with the understanding that relationships between

traits and behaviours and between traits and situational measures can be examined with the

same techniques.

An assumption of many trait theories is that individual differences in states correspond to

individual differences in traits (e.g. Mischel, 2004). For example, people who are more trait

anxious should be, on average, more state anxious. The phrase ‘on average’ has been the

source of considerable debate (e.g. Epstein, 1979;Mischel, 1968), although this debatewill

be put aside for the moment. Within multilevel modelling, such relationships can be

examined using the following sets of models.

First, state level means are estimated with this (level 1) equation:

yij ¼ b0j þ rij

In this model, yij is a measure of a psychological state for person j on occasion i, b0j is a

random coefficient representing the mean of y for person j (across the i occasions for which

data were provided), rij represents the error associated with each measure, and the variance

of rij constitutes the state level residual (or error) variance
1. Such a model is referred to as

‘unconditional’ at level 1 because states are not being modelled as a function of other level

1 variables.

Conceptually, in multilevel modelling, dependent variables from one level of analysis

become independent variables at the next level, and so at the person level, individuals’

mean states (b0j s) become the dependent variable. The basic (unconditional) person level

(or level 2) model is:

b0j ¼ g00 þ u0j
1The nomenclature used in this article, in which level 1 coefficients are represented with subscripted bs, and level 2
coefficients are represented with subscripted gs, is the original nomenclature used by Bryk and Raudenbush
(1992) and numerous other multilevel modellers. More recently, Raudenbush and Bryk (2002), decided to use bs
and gs for data structures in which people are nested within groups, and to use ps and bs to represent level 1 and
level 2 (respectively) when observations are nested within persons. Given the long history of the use of bs and gs,
this article uses this convention, although readers will need to keep in mind that some authors will use ps and bs
when describing two level analyses in which observations are nested within persons.
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In this model, b0j is a random coefficient representing the mean of y for person j, g00
represents the mean of these means, u0j represents the error associated with each mean, and

the variance of u0j constitutes the person level residual (or error) variance. The combination

of totally unconditional level 1 and level 2 models is referred to as a ‘totally unconditional’

or ‘null’ model, and analysts are advised to conduct such analyses before they conduct

conditional models. Although unconditional models do not normally test hypotheses

per se, they describe how the variance of a measure is distributed, and these baseline

variance estimates can be used to estimate effect sizes.

Relationships between traits and mean states are examined with the following level 2

model:

b0j ¼ g00 þ g01ðTRAITÞ þ u0j

In this model, g01 represents the coefficient for a TRAITmeasure, and the variance of u0j
constitutes the person level residual (or error) variance. If the g01 is significant, then there is
a significant relationship between mean state (b0j) and the trait measure.

Analyses of such relationships will be illustrated using data described in Nezlek and

Plesko (2001). In this study, participants provided a trait measure of self-concept clarity

(SCC; Campbell, Trapnell, Heine, Katz, Lavallee, & Lehman, 1996), and twice a week for

up to 10 weeks they provided a state measure of SCC. For this study, state was defined as 1

day. An unconditional model of state SCC estimated the between-person variance (the

variance of the intercept, u0j) to be 2.49 and the within-person variance (the level 1

variance, rij) to be 0.56. Such estimates suggest that although approximately 82% of the

total state variance of SCC was between people [2.49/(2.49þ 0.56)], there was still

sufficient within-person variance to model state level relationships. It is important to note

that such distributions of within- and between-person variance in state measures can vary

widely. For example, in Nezlek (2002) participants described their public and private

self-awareness (the state level analogues of public and private self-consciousness) each day

for 2 weeks. Nezlek found that between-person variance accounted for only 47% of the

total variance of daily public self-awareness and 46% of the total variance of daily private

self-awareness.

One way to evaluate relationships between traits and mean states is through predicted

values based on estimates of fixed effects (the g01 coefficient in the above model). Within a

regression framework, analysts frequently compute predicted values for people �1 SD on

a predictor to illustrate such relationships. For the analyses of SCC reported by Nezlek and

Plesko (2001), the mean of means (g00) for state SCC was 4.69, the coefficient for the

corresponding trait measure of SCC (g01) was 0.08, and the SD for trait SCC was 14.6. The

predicted mean state SCC for a person 1 SD above the mean on trait SCC would be 5.86

[4.69þ (14.6� 0.08)], and the predicted mean state SCC for someone 1 SD below the

mean would be 3.52 [4.69� (14.6� 0.08)]. Such calculations can be simplified somewhat

by standardizing trait level measures prior to analysis, a topic discussed later.

The other way to evaluate the strength of such relationships is to estimate the variance in

mean states explained by traits. This is done by comparing the residual error of the

intercept (the variance of u0j) from a totally unconditional model to the residual error from

a conditional model that includes a trait measure at level 2 (the person level). For the

Nezlek and Plesko data, the unconditional residual error for the intercept of state SCC was

2.49 and the conditional residual error (when trait SCC was included as predictor) was

1.14. The explained variance was 54% [(2.49–1.14)/2.49], corresponding to a correlation

of 0.73 between trait and mean state SCC (the square root of 0.54). This procedure is
Copyright # 2007 John Wiley & Sons, Ltd. Eur. J. Pers. 21: 789–810 (2007)
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explained in Bryk and Raudenbush (1992; p. 65). Moreover, terms can be added to this

basic model to examine how two (or more) trait level measures predict a state level mean

either independently or interactively. Such models are constructed just as models in single

level regression are constructed.
Categorical dependent measures

Just as relationships between states and traits can be examined, relationships between traits

and other state level variables such as behavioural ratings or situational characteristics can

be examined. To do this, one simply changes the dependent measure in the model. There is

a potentially important difference however between state level measures of psychological

constructs and other state level measures of behaviours or situations, and this difference has

implications for the type of modelling procedure one uses. Psychological states are

typically measured with scales (i.e. continuous measures). In contrast, behavioural and

situational measures may be categorical (e.g. did a specific behaviour occur or not, or did a

specific situation exist or not), and such categorical outcomes need to be analysed with

slightly different procedures than those used for continuous measures.

The logic of multilevel analysis is the same for the analysis of categorical dependent

measures as it is for continuous dependent measures; what differs is the specific way

coefficients are estimated. This difference reflects the fact that categorical variables are not

normally distributed. In particular, distributions of categorical variables violate an

important assumption of the independence of means and variances. For example, the

variance of a binomial distribution varies as a function of the mean probability of the

distribution. The specificmanner in which such problems are addressed varies as a function

of the exact nature of the distribution (e.g. dichotomous vs. trichotomous outcomes), and

the analysis of different types of non-normally distributed variables (including

non-normally distributed count variables) is discussed by Raudenbush et al. (2000).

The analysis of categorical measures will be illustrated by additional analyses of data

presented in Nezlek and Smith (2005). In this study, participants described the social

interactions they had over 2 weeks, and for present purposes, these interactions were

classified as involving a close friend or not, coded 1¼ friend present, 0¼ friend not

present. Interactions were analysed nested within persons, and the level 1 model is

structurally similar to the model used for continuous measures except that the coefficient is

now an expected log-odds. Individual differences in such estimates are examined at level 2

as before. The level 1 model for a Bernoulli outcome (n¼ 1) is:

Probðy ¼ 1 b0j

�
� Þ ¼ f

The intercept of the level 2 model (g00) represents the mean probability for the sample.

There are two ways of estimating such coefficients, unit-specific and population-average

models, and the analyses of these data produced log-odds (g00) of �0.197 (unit specific)

and �0.096 (population average).

For a Bernoulli outcome, the expected log-odds coefficient can be transformed into a

probability estimate with the following formula:

Prob ¼ 1

1þ expf�g00g
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And for these data, this corresponds to means of 45.1% (unit-specific) and 47.6%

(population average) for the percent of interactions that were dyads. Note than unit-specific

and population-average estimates can differ, sometimes widely.

Relationships between trait level measures and state level differences in the probability

of y are examined using the same types of models as those used to examine relationships

between traits and means of state level continuous measures. To continue the above

example, individual differences in percent of interactions with a friend were examined as a

function of extraversion as measured by the BFI-44 (John, Donahue, & Kentle, 1991) using

a model similar to the level-2 model used in the analysis of continuous measures.

Extraversion was standardised prior to analysis.

The coefficients for extraversion (g01) was 0.35 (unit-specific) and 0.27 (population-

specific), which were both significant, p< 0.001. Using the unit-specific estimates, for

people þ1 SD on extraversion, the estimated log-odds was �0.197þ 0.35¼ 0.86,

corresponding to 53.8%. For those �1 SD, the estimated log-odds was �0.55

(�0.197� 0.35), corresponding to 36.6%. Extraversion was positively related to the

percent of interactions involving a friend. Explained variances could also be estimated by

comparing the level 2 residual variances from a totally unconditional model and a model

that included extraversion at level 2.

Similar to the analyses of continuous measures, predictors can also be added at level 1. It

is important to note however, that in analyses of non-linear outcomes, there is no level 1

variance estimate. For non-linear outcomes, means and standard deviations are not

independent, and this lack of independence precludes the possibility of estimating a level 1

variance. Finally, decisions about using unit-specific or population-average are discussed

in Raudenbush et al. (2000). It is not possible to provide blanket recommendations about

which of these to use, although many personality researchers may be more interested in the

inferences of unit-specific estimates.
Relationships between state level measures

In a two level data structure in which observations are nested within persons, relationships

between or among states, situations and behaviours are examined at level 1. For example,

Nezlek (2002) collected daily (state) measures of public (PUB) and private (PRV)

self-awareness, and the relationship between these two measures can be examined with a

level 1 model such as:

yij ¼ b0j þ bijðPRVÞ þ rij

In this model, the dependent measure is PUB, and for each person a coefficient (referred

to as a slope to distinguish it from an intercept) is estimated describing the relationship

between PUB and PRV. The statistical significance of the mean relationship between the

two measures is examined at level 2 with a test of the g10 coefficient:

b0j ¼ g00 þ u0j
b1j ¼ g10 þ u1j

The null hypothesis is that g10 (the mean of the b1j slopes) is 0. It is important to note that

rejecting this null hypothesis does not mean that public and private self-awareness covary

for all persons (although they may). For example, it is possible for g10 to be positive and

significantly different from 0 while some individual slopes (b1j s) are 0 or negative. It is
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equally important to note that there may be important between-person variability in a slope

when a mean slope (e.g. g10) is not significantly different from 0. For example, a mean

slope of 0 could occur if half of a sample had positive slopes and half had negative slopes.

The analysis of individual differences in slopes is discussed in the next section.

The relationship between two states can be evaluated using techniques similar to those

used to evaluate relationships between traits and mean states. Predicted values for PUB for

occasions �1 SD from the mean for PRV can be estimated using the coefficients in the

models. For example, the mean intercept for PUB (g00) was 3.29, the mean slope for PRV

was 0.25, and the within person SD for PRV was 1.07. For occasions þ1 SD on PRV, the

estimated PUB score would be 3.56 [3.29þ (1.07� 0.25)], and for occasions �1 SD on

PRV the estimated PUB score would be 3.02 [3.29� (1.07� 0.25)]. Although analysts can

use any values of a predictor to illustrate the relationship between two measures, it is

important to note that the within-person SD of a predictor is estimated using the level 1 (i.e.

within-person) variance estimate from a totally unconditional model. It is not based on

analyses that ignore the nested structure of the data (i.e. the SD of a distribution treating all

level 1 observations as independent).

Relationship between two states can also be described in terms of shared variance. This

is done by comparing the level 1 residual error (the variance of rij) from a totally

unconditional model to the level 1 residual error from a conditional model that includes a

predictor at level 1. For example, the unconditional level 1 residual error for PUB was 1.24,

and the conditional level 1 residual error when PRV was a predictor was 1.08. The shared

variance was 13% [(1.24� 1.08)/1.24], corresponding to a correlation of 0.36 (the square

root of 0.13) between PUB and PRV.

The basic state level model can be elaborated upon just as a single level multiple

regression can be elaborated upon. Additional terms can be entered, interactions can be

tested, and so forth. One caveat is in order however, when there are multiple level 1

predictors. The variance estimating procedure described above may not provide

satisfactory estimates of reductions in residual error. It is possible that a level 1 model

with multiple significant predictors will not account for more level 1 residual variance than

a level 1 model with fewer significant predictors, a situation that cannot occur in single

level OLS analyses. This is a function of how random error is estimated using maximum

likelihood procedures, an issue discussed by Kreft and de Leeuw (1998, pp. 115–119).

Finally, it is important to note that MRCM programmes estimate unstandardised

coefficients.
Examining differences across situations

Somewhat different types of models are needed when level 1 predictors are categorical

variables. For example, assume people are measured onmultiple occasions in four different

situations, S1, S2, S3 and S4. Mean differences across these situations can be examined

using either contrast or dummy codes. A contrast code ofþ3,�1,�1,�1 could be used to

compare the mean for S1 versus the mean for S2, S3 and S4, a code of �1, �1, þ1, þ1

could be used to compare the mean for S1 and S2 versus the mean for S3 and S4, and so

forth. Models relying on contrast codes take the same form as models for continuous

predictors:

yij ¼ b0j þ b1jðContrastÞ þ rij
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In such a model, the slope (Contrast) represents a difference score. Just as was the case

with continuous predictors, significance tests of such contrasts are conducted at level 2: Is

the mean contrast (g10) significantly different from 0?Multiple contrasts can be included if

desired.

Situational influences can also be examined using dummy codes representing S1, S2, S3

and S4. Such a model would take the following form:

yij ¼ b1jðS1Þ þ b2jðS2Þ þ b3jðS3Þ þ b4jðS4Þ þ rij

In this zero intercept model (the intercept needs to be deleted from such models to avoid

linear dependence among the predictors) the four coefficients represent the mean for y for

each of the four situations. This can be verified by generating predicted values using the

dummy codes. For example, when S1 is 1, the other three codes are 0. Multiplying the four

coefficients by 1, 0, 0, 0 produces a predicted value for S1. Such a dummy coded analysis

would produce the following level 2 model:

b1j ¼ g10 þ u1j
b2j ¼ g20 þ u2j
b3j ¼ g30 þ u3j
b4j ¼ g40 þ u4j

In HLM, the coefficients representing the mean rating for each situation (g10, g20, g30
and g40) can be compared using tests of fixed effects (Bryk & Raudenbush, 1992; pp.

48–56). For example, to compare differences in means for S1 and S2, g10 and g20 would be
compared.

Although either contrast or dummy coded analyses can be used to compare means, there

are important differences between the two. Contrast codes model difference scores, and

tests of significance test if mean differences are significantly different from 0, whereas,

dummy codes model mean scores, and tests of significance test if differences between or

among means are significantly different from 0. Although the two types of analyses may

provide similar results when means are compared (i.e. mean differences are likely to be

similar to differences between means), this similarity will vary as a function of

the similarity of the distribution of situations across people in a study. The more similar the

number of situations is both within and between participants, the more similar the results of

the two types of analysis will be. Regardless, contrast and dummy codes model different

within-person quantities, and these differences have important implications for analyses at

the between-person level, the next topic.
Trait moderation of state level relationships

Various models of personality claim or assume that psychological traits (or trait level

characteristics) moderate people’s reactions to situations. For example, Eysenck’s model

posits that individuals high in trait neuroticism will react more strongly to stressful

situations than those low in trait neuroticism (Eysenck & Eysenck, 1985), and such

relationships can be examined by modelling individual differences in level 1 slopes at

level 2. In multilevel terminology, such analyses are frequently referred to as ‘slopes as

outcomes’ analyses (because a slope from a level 1 model becomes a dependent measure

at level 2) or as ‘cross level interactions’ (because the analyses concern how relationships

at one level of analysis vary as a function of measures at another level of analysis).

For example, assume a researcher believes that a particular trait is related to reactions to
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only two of four particular situations. Reactions to each of the four situations could be

modelled using dummy codes as in the previous example, and relationships between

these reactions and the trait in question could be examined with the following level 2

model:

b1j ¼ g10 þ g11ðTraitÞ þ u1j
b2j ¼ g20 þ g21ðTraitÞ þ u2j
b3j ¼ g30 þ g31ðTraitÞ þ u3j
b4j ¼ g40 þ g41ðTraitÞ þ u4j

In such an analysis, the g11, g21, g31 and g41 coefficients represent (respectively) the

relationships between the trait of interest and mean reactions to the four situations, and

each of these relationships can be tested individually. Such a model can also be used to

compare the strength of these relationships by comparing the g11, g21, g31 and g41
coefficients individually or in groups (e.g. g11 vs. g21, g11 and g21 vs. g31, etc.).

If hypotheses of interest concern relationships between traits and differences in

reactions to different situations, difference scores can be modelled at level 1 using contrast

codes as discussed above. Individual differences in such difference scores can then be

examined using models similar to that just described. Similarly, if hypotheses of

interest concern individual differences in the covariation between states, slopes

representing such state level covariation can also be analysed using models similar to

those just described.
State level interactions

Interactive effects at the state level can be examined in twoways. The most straightforward

method involves creating terms representing interactions just as would be done in single

level multiple regression (e.g. Aiken & West, 1991). Following the recommendation of

Aiken and West, continuous measures should be mean centred before creating such

interaction terms. Mean centring in this instance refers to subtracting each person’s mean

from that person’s observations for each occasion. Categorical measures can be

represented with contrast-codes of different types. Such interactions can be interpreted by

generating predicted values based on the estimated coefficients. As was the case with

interpreting analyses involving no interaction terms, analysts must be mindful of the fact

that these interactions and predicted values represent means for these effects. Interaction

terms and the nature of interactions may vary considerably across individuals. See Nezlek

and Plesko (2003) for an example of such analyses.

Although powerful, this approach may be cumbersome when categorical variables have

numerous categories. For example, to examine how the relationship between a dependent

measure and a continuous predictor varies across four different types of situations requires

a model with seven terms, one for the predictor, three (n�1) representing the four

situations, and three representing the interaction between the predictor and the situational

contrasts.

Alternatively, within-person interactions can be examined by adding an extra level of

nesting. For example, assume a researcher is interested in how the relationship between

State 1 and State 2 varies across four situations, and State 1 is the dependent variable. This

would require a three level model in which occasions (subscripted i) are nested within
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situation (type of occasion, subscripted j) which are nested within people (subscripted k).

Level 1 Occasion : yijk ¼ p0jk þ p1jkðState 2Þ þ eijk
Level 2 Situation; intercept : p0jk ¼ b0lkðS1Þ þ b02kðS2Þ þ b03kðS3Þ þ b04kðS4Þ þ r0jk

Situation; slope : p1jk ¼ b11kðS1Þ þ b12kðS2Þ þ b13kðS3Þ þ b14kðS4Þ þ r1jk
Level 3 Person; intercept : S1 : b0lk ¼ g010 þ u01k

S2 : b02k ¼ g020 þ u02k
S3 : b03k ¼ g030 þ u03k
S4 : b04k ¼ g040 þ u04k

Person; slope : S1 : b11k ¼ g110 þ u11k
S2 : b12k ¼ g120 þ u12k
S3 : b13k ¼ g130 þ u13k
S4 : b14k ¼ g140 þ u14k

The level 1 model estimates the slope (covariance) between State 1 and State 2. In turn,

the intercepts and slopes from this level 1 model are modelled at level 2 (the situation) with

a zero-intercept model in which each type of situation is represented by a dummy coded

variable. The coefficients from this model are then modelled at level 3, the person. Slopes

representing the relationship between State 1 and State 2 for different situations can be

compared using the multiparameter tests described below. For example, comparing the

g110 and g120 coefficients would determine if the slopes for situations 1 and 2 were similar.

Moreover, combinations of slopes can be compared, for example, situations 1 and 2 versus

situations 3 and 4 (g110 and g120 vs. g130 and g140).

Such comparisons can also be done with a two level model by adding terms to the level 1

model as described above. For example, to compare the slopes for situations 1 and 2 to the

slopes for situations 3 and 4, a dummy or contrast coded variable representing whether an

occasion was 1–2 or 3–4 could be created. The advantage of the three level approach is that

analysts do not have to create terms representing all possible comparisons in advance. One

disadvantage of the three level approach is that individuals who do not have at least two

occasions of each situation will be eliminated from the analyses. Also, depending on the

data structure, it may be difficult to estimate random error terms in the types of three level

models described here. It may be less difficult to estimate random error terms for two level

models with only a few terms representing specific interactions than for three level models

in which slopes for all types of situations are modelled. Depending on the data structure,

analysts may want to consider running three level models to get a sense of the exact source

of interactions and then run two level models with codes representing these sources.
Measurement models

Within MRCM, measurement models are those in which observed measures of constructs

are nested within constructs, producing latent variable analyses. For present purposes, two

uses of measurement models will be discussed. Measurement models can be used to

conduct simultaneous analyses of multiple dependent measures, and they can estimate

within-person reliabilities of scales. Such techniques will be illustrated using three level

models, items nested within constructs, constructs nested within occasions of measurement

and occasions nested within people.
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The basic form of a three level model in which level 1 is a measurement model will be

illustrated by a reanalysis of data presented in Nezlek (2002). In this study, participants

provided daily (state level) measures of public (PUB) and private self-awareness

(PUB), and each of these constructs was measured with two items. Participants

also provided descriptions of daily events. Within a state-situation analysis, PUB and

PRV are psychological states, and daily events can be considered to be situational

variables.

Observations at the first level of analysis consist of responses to individual items for each

construct and dummy coded variables representing the particular construct an item

measures. For these data, there are four responses for each day, two for PUB and two for

PRV, and each of these four responses is modelled as a function of two dummy coded

variables, one representing PUB and the other representing PRV. The level 1 model is a no

intercept model, and the level 1 coefficients, p1jk and p2jk, represent daily mean scores of

PUB and PRV, respectively.

yijk ¼ p1jkðPUBÞ þ p2jkðPRVÞ þ eijk

In this model, yijk represents the i-th response on day j for person k.

Such an analysis provides numerous advantages over a series of univariate two level

models. Assume that these means are modelled as a function of four different types of

events (which could be considered as four situational variables), positive and negative

social events and positive and negative achievement events.
PUB : p1jk¼b11kðPos�SocÞþb12kðNeg�SocÞþb13kðAch�PosÞþb14kðAch�NegÞþr1jk

PRV : p2jk¼b21kðPos�SocÞþb22kðNeg�SocÞþb23kðAch�PosÞþb24kðAch�NegÞþr2jk

A three level model allows statistical tests of coefficients across equations (i.e. across

variables), whereas a two level model does not. For example, based on separate analyses of

PUB and PRV, Nezlek (2002) reported that PUB positively covaried with positive social

events, whereas PRV did not. This three level model permitted a direct comparison of the

b11k and b21k slopes that represented these two relationships. Consistent with the

conclusion reached by Nezlek, these two coefficients were significantly different

(x2(1)¼ 13.6, p< 0.01); nevertheless, directly testing the difference between two

relationships makes a stronger argument than relying on the results of individual

significance tests.

Measurement models can also be used to estimate scale reliabilities in intensive repeated

measures design such as those described in this article. To obtain the ‘purest’ estimate of the

reliability of a scale, scales should be analysed one at a time. It is important to note that this

reliability controls for occasion and person level variances (levels 2 and 3, assuming items

nested within occasions nested within persons). When interpreting such analyses, the

reliability of the scale is the reliability of the level 1 intercept. Similar to a Cronbach’s a,

these reliabilities are based on a ‘tau-equivalent’ model—all items are assumed to have the

same loading on the latent factor. Congeneric measurement models, models in which item

loadings are estimated and can vary, cannot be examined using the techniques described

here. Such models require multilevel factor analyses, a topic beyond the scope of this paper.

It is critical to note that in studies of within-person variability, the use of a measurement

model as described herein is the only way to estimate the within-person reliability of a set

of items. It is not appropriate to calculate item means by aggregating across occasions and
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then estimate reliability by calculating a Cronbach’s a using these means. Although such a

procedure provides an estimate of some type of reliability, it does not estimate the

within-person reliability that most analysts assume that it does. The between-person

reliability based on aggregate scores for items that is estimated by such a procedure is

mathematically unrelated to the within-person reliability estimated by the procedures

described above (Nezlek & Van Mechelen, 2006).

Similarly, it is not appropriate to estimate reliability using a series of between-person

estimates. For example, in a study in which measures are collected once a day for 2 weeks,

it is not appropriate to calculate a reliability for Day 1, then for Day 2, and so forth, and then

combine these into a single estimate. Such an estimate is incorrect because it ignores the

random error (sampling) associated with the selection of days. Invariably, the specific days

over which a study is conducted is arbitrary, and it is not appropriate to assume that Day 1

for person 1 should be linked to Day 1 for person 2.

Given the influences that covariances between latent constructs can have on estimates of

reliabilities, it is probably best to analyse a single scale at a time, thereby eliminating any

influence on the reliabilities of covariances between scales (Nezlek & Van Mechelen,

2006). Such analyses should also be totally unconditional (no predictors at any level of

analysis); otherwise, reliability estimates will reflect the variances adjusted for these

predictors.

Despite their advantages, a few caveats about using such measurement models must be

mentioned. First, because latent variables are modelled, each construct must have at least two

measured variables. Single indicators do not provide sufficient information to separate true

and error variance. Second, when analysing multiple dependent measures simultaneously, the

number of parameters that must be estimated can increase considerably, and this may tax the

carrying capacity of a data set, making it difficult to get models to converge. Third, the level 2

parameter estimates from a three level modelmay not be that different from the corresponding

level 1 parameters estimated in two level analyses of individual measures.

For example, three level multivariate analyses of the five dependent measures presented

in Nezlek and Gable (2001), with level 1 as a measurement model, produced results (i.e.

within-person relationships between states and events) that were functionally equivalent to

the results of univariate two level analyses. The results were so similar that Nezlek and

Gable presented the two level models in the interest of parsimony. This similarity may have

been due to the regularity of their data structure (few missing data, similar numbers of

observations for each person, etc.) and the high reliability of their measures. Under less

ideal conditions, the two types of analyses might not be as similar.

Although powerful, researchers need to exercise caution when using such measurement

models. It is absolutely critical to recognise that the number of items used to measure

constructs and including and excluding constructs from the level 1 measurement model can

change any and all estimates, including estimates of reliability. The parameters estimated

by a multilevel analysis are based on the covariances between latent constructs, and

changing the basic covariance matrix can lead to changes in parameters based on this

matrix.

Finally, it is also possible to estimate within-person correlations using measurement

models. The programme HLM automatically estimates the correlations among latent

constructs at level 1 (the t–pmatrix—tau–pi) and level 2 (the t–bmatrix—tau–beta). For

an analysis in which items are nested within occasions and occasions within persons, these

matrices represent (respectively) estimates of the state level correlations between the

constructs and estimates of the correlations between mean state levels of the constructs (i.e.
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correlations between the intercepts). Such correlations should be viewed very cautiously

however, because such estimated correlations can vary as a function of the variables

included in an analysis and differences in the variances of measures.

Change and stability across time

The stability of personality (including state-trait relationships) across time is an important

consideration, and such issues can be examined within the proposed framework. Time can

be incorporated either by adding terms that represent when measures were collected or by

adding a level of nesting representing when measures were collected. Any number of

temporal periods and any separation between periods can be analysed using either strategy.

Analyses of temporal stability are structurally similar to the analyses of situations

described previously. Assuming a data structure in which there are observations nested

within persons on multiple occasions across time, each measurement occasion can be

treated like it was a situation. Such analyses can be done using either a two level model,

in which within-person interaction terms are created representing changes across time (e.g.

Nezlek, in press), or by adding a level of nesting representing the different time periods.

Unless a study has many time periods (perhaps five or more), it will probably not be

efficient to add a level of nesting. When making decisions about adding a level of nesting, it

is useful to think of the number of observations at a particular level as a sample of a

potential population of observations. Two or three observations do not constitute a strong

sample. For example, the data reported in Nezlek (in press) were also analysed with a three

level model (days with time periods, time periods within persons), and it was very difficult

to estimate all the random error terms in this model. Basically, the model exceeded the

‘carrying capacity’ (Nezlek, 2001) of the data. The two time periods of the study did not

provide enough information to estimate random error terms for time period. Moreover,

examination of goodness of fit indices suggested that the two-level model fit the data better

than a three level model.

The aggregation question

Aggregating measures across repeated observations for an individual has been the focus of

considerable attention in the study of personality. Some argue that such aggregation

ignores or obscures important cross-situational differences (e.g. Mischel, 1968), others

argue that such aggregation is needed to ensure that summary measures are reliable (e.g.,

Epstein, 1979), and some argue that inconsistency across repeated observations can be

considered as error variance or meaningful cross-situational variability, depending on how

constructs are defined (Kirkpatrick, 1997). MRCM analyses of the type of repeated

measures data that have been the focus of this debate can address these various concerns

and provide analyses representing each of these perspectives.

To examine relationships within an aggregationist model, observations are simply nested

within persons, and relationships between these means (intercepts from level 1) are

examined at level 2. These analyses are more accurate than comparable OLS analyses of

within-person means because the intercepts are ‘precision weighted’ at level 2. Precision

weighting is a procedure that weights observations (people in the present case) by the

number of observations and the reliability (consistency) of responses.

If a researcher is interested in comparing within-person variances (i.e. the possibility that

there are meaningful individual differences in intraindividual variability) in HLM, this can

be done with a test of the homogeneity of level 1 variances. If there are meaningful
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differences in within-person variances for a dependent measure, further tests can

incorporate such differences–that is significance tests of parameter estimates can be based

on models that do not assume homogeneity of variances.
Creating behavioural profiles

The ability to examine between-person differences in within-person relationships is

perhaps the most important advantage of MRCM over other techniques. Some (e.g.

Mischel & Shoda, 1999) have suggested that personality should be defined by patterns of

such within-person relationships. More specifically, they discuss personality in terms of

individual differences in ‘if-then’ relationships—if a certain situation exists, then a person

has a specific reaction. Within the present framework, reactions to situational variables can

be represented by level 1 slopes (i.e. coefficients describing relationships between

situational variables and state level outcomes). If one is interested simply in relationships

between person-level measures and such if-then relationships, then the techniques

previously described for examining trait-level moderators of state-level relationships can

be used.

If one is interested in examining personality types defined in terms of patterns of if-then

relationships, the situation is much more complex and less well-understood. One simple

alternative relies on using estimated values for individuals. Slopes for individuals can be

estimated, and these coefficients can be used as input for other analyses (e.g. cluster analysis).

In HLM, estimated slopes can be obtained via a residual file. At this time, it is not clear if

such analyses violate any important assumptions, but the technology is readily accessible.

A more interesting (and demanding) alternative has been proposed by Verbeke and

Lesaffre (1996). They suggested using what is sometimes called a ‘mixture model’ to

examine possible sub-groups in random effects models. Most multilevel analyses assume

that errors are normally and randomly distributed. Verbeke and Lesaffre assume they are not,

and the goal of the analyses is to identify groups that have similar error terms and structures.

Such mixture models can be computationally intense and difficult to implement, and no

applications of the technique to within-person have been published to date. Nevertheless, the

technique appears to have considerable potential. Software to implement these analyses can

be obtained at http://med.kuleuven.be/biostat/software/software.htm#Mixturelin.

A word of caution is in order regarding both of these analyses. Each requires that the

effects in question be modelled as random effects, that is there is sufficient information in

the data structure to estimate random error. In MRCM, if an effect is not modelled as

random (i.e. the random error term accompanying a fixed effect is not estimated) there will

be no variation in the estimated coefficients. It is essential to note that if a random error

term is not estimated for a fixed effect it does not mean that the coefficient does not vary.

The coefficient can still vary non-randomly (Nezlek, 2003, 2007), that is it is still possible

to examine level 2 differences in the level 1 coefficients.
Causal inference

The preceding analysis has intentionally begged questions of causality. Techniques and

models have been described in terms of estimating covariances, relationships between

measures, with implicit assumptions that trait level constructs are causes of state level

constructs and situations are causes of psychological states and behaviours. Although such

assumptions are consistent with the assumptions of many trait theories and with the S-R
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tradition that has informed much of contemporary research, a truly comprehensive

framework needs to provide means to evaluate such assumptions. Although MRCM

provides no panacea for this problem, the technique can be used to examine issues of

causality.

For temporally structured data such as studies of relationships between daily

psychological states and daily events, researchers have used lagged analyses. Following

the recommendation of West and Hepworth (1991), states on day n are predicted from

events and states on day n�1, and events on day n are predicted from states and events on

day n�1, and these lags are examined. Consistent with the assumption that situations

change states, some studies (e.g. Bolger & Zuckerman, 1995; Gable, Reis, & Elliot, 2000;

Nezlek & Gable, 2001) have found support for a causal link from events to states, defined

as a significant relationship between states on day n and events on day n�1 combined with

a non-significant relationship between events on day n and states on day n�1. Fewer

studies (e.g. Nezlek, 2002) have found support for a link from states to events.

In addition to this approach there are other ways of analysing causality within temporally

structured data (Little, Schnabel, & Baumert, 2000), and most of these options use some

variant of structural equation modelling (SEM). Such analyses may not be appropriate

however, when analysing data structures that are not temporally organised such as

event-contingent data structures in which the time between events varies widely. With such

data, researchers might be more interested in treating the data as more or less static and

conducting what amounts to within-person SEM analyses.
Modelling error

In some situations, analysts will want to model the error structure of their data. For

example, in a study in which data are collected across time, someone may want to model an

autoregressive error structure—the extent to which errors are correlated across time. The

manner in which this is done varies across different programmes, making a detailed

description of these methods beyond the scope of this paper. It suffices to note that such

tests can be done using most of the major multilevel analysis programmes. Moreover, some

programmes (e.g. MlwiN) allow for member-by-member examination and testing of the

covariance error matrix, providing considerable control over what errors are modelled and

how they are modelled.
A comparison of MRCM and structural equation modeling of states and traits

Some scholars have described how state-trait relationships can be examined using SEM

(e.g. Steyer, Ferring, & Schmitt, 1992; Kenny& Zautra, 1995). Although such analyses can

distinguish the variances and covariances of states and traits (e.g. Schmitt & Steyer, 1993),

they may not be practical for the types of questions and data structures (intensive repeated

measures) discussed in this article. For example, although it is technically possible to

conduct SEM analyses in which each person is treated as a group and comparisons are

made of parameters across groups, group level SEM may not be practical when many

people are being studied. Group level SEM was primarily intended to compare relatively

sophisticated models across relatively few groups (men vs. women, control vs.

experimental treatments, racial groups, etc.). When conducting group level SEM, analysts

need to specify constraints across specific groups such as constraining the covariation

between two constructs to be the same for men and women or for two of eight different
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treatment conditions. Such specification becomes impractical when there are 100 groups

(i.e. people) in a study.

Another limitation of SEM-based analyses of states and traits is the requirement that all

units (i.e. persons) have the same number of observations. For a longitudinal study in which

the primary interest is change and stability across a fixed number of data collection points,

such a requirement may not pose serious problems. Data may be able to be collected from

most participants at most of the desired times, and in such cases analysts may want to use

some type of growth curve analysis. It should be noted however, that participants without

complete data are eliminated from SEM analysis.

Such a limitation may present problems for certain types of interval contingent studies in

which data are collected many times each day (sometimes at random) for many days. For

example, 12 observations per day for 2 weeks would produce 168 data collection points—

an impractical number of waves for SEM. Moreover, if the observations are collected at

random intervals, then observations cannot be matched. The same difficulty presents itself

for event-contingent studies in which the number of observations varies across

participants—observations cannot be organised into waves.

Presently, it seems that there is a trade-off between MRCM and SEM (Schnabel, Little,

& Baumert, 2000). SEM allows for more sophisticated models that can provide stronger

bases for causal inferences than MRCM, whereas MRCM is better for analysing

covariances within multilevel data structures. Moreover, SEM provides a better basis for

analysing complex error structures, although the flexibility of MRCM programmes such as

HLM and MlwiN has increased, and there are numerous options in SAS. It is possible that

some sort of omnibus, multilevel structural modelling technique will be developed in the

future (e.g. Chou, Bentler, & Pentz, 2000); however, until such techniques are available,

researchers will need to rely on less sophisticated bases for drawing inferences about

causality within some multilevel structures. Nevertheless, MRCM provides more accurate

parameter estimates than comparable OLS techniques, and this accuracy provides a better

basis for drawing conclusions about causal inferences despite other limitations.
IN CONCLUSION

The proposed framework is not intended to be a panacea for all the difficulties

personologists encounter as they try to disentangle the complexities of the human

personality. The framework is intended to provide a starting point or context for

understanding some of these complexities. As technology advances, it is possible that the

techniques described in this article will be supplanted by more powerful types of analyses.

Nonetheless, the present multilevel framework represents a flexible and powerful method

to study relationships at multiple levels of analysis simultaneously, a simultaneity that is at

the heart of understanding relationships among state and trait level measures.
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