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MultilEvEl MoDEling for 
PsyChologists

John B. Nezlek

Multilevel analyses have become increasingly com-
mon in psychological research, although unfortu-
nately, many researchers’ understanding of 
multilevel analysis has lagged behind this increased 
interest and use. Many researchers have heard of 
and are curious about multilevel modeling (MLM), 
but they are unfamiliar with it, perhaps so unfamil-
iar that they do not know where to start. This unfa-
miliarity is probably due in part to the fact that 
many graduate programs in psychology do not offer 
(or have not offered) courses in multilevel analysis. 
This chapter is an attempt to meet this need by 
familiarizing readers with MLM as it pertains to psy-
chological research broadly defined.

In writing this chapter, I had two goals in mind. 
First, I wanted readers to learn the basics of multi-
level analysis. Second, I wanted to increase readers’ 
awareness of the multilevel perspective so that they 
might recognize the multilevel features of the data 
they have collected and would be able to be formu-
late more clearly research questions that might 
involve multilevel data. As Kreft and de Leeuw 
(1998) noted, “Once you know that hierarchies 
exist you see them everywhere” (p. 1). Conversely, 
if you do not know how to conceptualize a multi-
level data structure and the accompanying analyses, 
you may not see or recognize hierarchies anywhere.

In this chapter, I provide a rationale for MLM: 
why it is necessary, its advantages over other tech-
niques, and so forth. I describe the basic structure of 
univariate multilevel analyses: the nature of the 
models and the types of parameters they can esti-
mate and how to conduct multilevel analyses, 

including different aspects of analyses such as cen-
tering, modeling error, weighted analyses, and cate-
gorical independent and dependent measures. I also 
offer suggestions about how to interpret the results 
of analyses and how to report results in papers. 
Finally, although they are in flux, I discuss software 
options.

This chapter is intended as an introduction for 
those who are not familiar with MLM. When writing 
this chapter, the only statistical training I assumed 
readers would have was an understanding of basic 
ordinary least squares (OLS) regression. Analysts 
who are familiar with the basics of MLM may find 
some value in my treatment, but advanced topics are 
not covered. Other chapters in this handbook cover 
some of these topics, such as Chapters 18, 19, and 
20 of this volume.

DEFININg MULTILEVEL ANALYSIS

What Is Meant by Multilevel?
A multilevel data structure is one in which observa-
tions at one level of analysis are nested (or clustered 
or grouped) within observations at another level of 
analysis. Sometimes, multilevel data structures are 
described simply as nested or as hierarchically nested. 
The critical, defining feature of such multilevel data 
is that observations at one level of analysis are not 
independent of each other—there is an interdepen-
dence among the data that needs to be taken into 
account. In this chapter, I focus on two-level data 
structures, but the framework and logic I use to 
describe two-level structures are readily applicable 



John B. Nezlek

220

to data structures with more than two levels. I dis-
cuss how to conceptualize the levels of a model in a 
separate section later in this chapter.

The lack of independence among observations is 
exemplified in studies of groups (e.g., students in 
classes or workers in work groups). Individuals in the 
same group all share the characteristics associated 
with their group, whereas they differ from each other 
in terms of individual-level characteristics. In addi-
tion, group-level characteristics such as teacher expe-
rience or the style of group leaders are likely to vary 
across groups. Therefore, individual differences such 
as performance can be examined in terms of explana-
tory variables at two levels of analysis—the individual 
(skill, motivation, etc.) and the group (e.g., teacher 
characteristics)—and members of different groups may 
vary in terms of measures at both levels of analysis.

The question is how to disentangle relationships 
between an outcome of interest and measures at 
multiple levels of analysis. For example, why are 
Mary’s test scores higher than Jane’s? Is this because 
Mary is smarter or works harder than Jane (an indi-
vidual-level relationship), or is it because Mary’s 
teacher is better than Jane’s and so the students in 
Mary’s class tend to have higher grades on average 
(a group-level relationship), or is it both? Moreover, 
it is possible that the individual-level relationship 
between how intelligent a student is and her grades 
varies across classes. The relationship may be stron-
ger in some classes than in others, and it may be of 
interest to understand (model) the differences 
between classes in such relationships.

When addressing such questions it is critical to 
recognize that relationships at different levels of anal-
ysis are mathematically independent. In a study in 
which persons are nested within groups, relationships 
at the between-group level tell us nothing about rela-
tionships at the within-group level, and vice versa. 
This independence is illustrated by the data in Tables 
11.1 and 11.2. In Table 11.1, the within-group rela-
tionships are positive and the between-group rela-
tionships are negative, and in Table 11.2, the 
within-group relationships are negative and the 
between-group relationships are positive.

Moreover, these two examples do not exhaust the 
possible combinations. Relationships at the within-
group level might vary across groups; some could be 

positive and some could be negative. Seeing data such 
as these, one might ask, “Which one is correct?” The 
answer is that neither is correct. If an analyst is inter-
ested in constructs defined at the between-group level, 
then the between-group relationships are correct. Cor-
respondingly, if the interest is in constructs defined at 
the within-group level, then the within-group relation-
ships are correct, with the caveat that these relation-
ships may not be consistent across groups.

In MLM the term group refers to an organizing 
unit or cluster. For studies of actual groups (e.g., 
work groups) this creates no confusion; however, 
for other types of nesting (e.g., observations within 
person, such as in a diary study), the term group can 
be confusing. So when observations are nested 
within people, a person constitutes a group. In a 
cross-cultural study, cultures might be the groups; 
in a community psychology study, communities 

TABLE 11.1

Relationships: Positive at Within-group Level and 
Negative at Between-group Level

Group 1 Group 2 Group 3

X Y X Y X Y

26 31 29 29 31 26
27 32 30 30 32 27
28 33 31 31 33 28
29 34 32 32 34 29
30 35 33 33 35 30

Mean 28 33 31 31 33 28

TABLE 11.2

Relationships: Negative at Within-group Level and 
Positive at Between-group Level

Group 1 Group 2 Group 3

X Y X Y X Y

11 18 19 23 19 28
12 17 20 22 20 27
13 16 21 21 21 26
14 15 22 20 22 25
15 14 23 19 23 24

Mean 13 16 21 21 21 26



Multilevel Modeling for Psychologists

221

might be the groups, and so forth. Using the term 
group in this way is a tradition in MLM, and as 
confusing as it may be for those unfamiliar with 
MLM, I follow this tradition.

Analytic Strategies for Analyzing 
Multilevel Data
Before describing multilevel random coefficient mod-
eling, which is the currently accepted “gold stan-
dard” for analyzing multilevel data sets, I briefly 
review other methods, in part to highlight some of 
the strengths of the MLM techniques I consider in 
detail. One way to distinguish such methods is to 
distinguish aggregation versus disaggregation meth-
ods. In aggregation methods, within-group summary 
statistics are calculated (e.g., means) and then ana-
lyzed. For example, a researcher might calculate for 
each U.S. state means for two variables (literacy and 
percentage of immigrants) and then calculate a corre-
lation at the state level. Such relationships are per-
fectly acceptable providing one does not commit 
what is called the ecological fallacy (Robinson, 1950), 
which occurs when it is assumed that the between-
group relationships exist at the within-group level. 
Using the 1930 U.S. Census data, in a classic paper, 
Robinson found a positive correlation between liter-
acy and percentage of residents who were foreign 
born at the between-state level but found that the 
within-state relationship was negative. The panels of 
data presented in Tables 11.1 and 11.2 illustrate the 
potential for such ecological fallacies.

In disaggregation analyses, analyses are done at 
only Level 1 (e.g., the individual level when persons 
are nested within groups), and relationships 
between outcomes and Level-2 measures are exam-
ined by assigning Level-2 measures to the corre-
sponding Level-1 observations. For example, in a 
study of work groups, a group-level measure such as 
the leadership style of the group leader would be 
assigned to each member of a group. In such analy-
ses, a least-squared dummy variable (LSDV; e.g., 
Cohen & Cohen, 1983) is often used to control for 
Level-2 differences in Level-1 measures. In LSDV 
analyses, a set of k − 1 dummy variables are added to 
the model, where k is the number of Level-2 units. 
Although such analyses achieve this control, they 
are fundamentally flawed in at least two ways. First, 

they assume that relationships between the outcome 
and the predictors are identical in all groups, an 
untenable assumption, and second, they do not 
model error properly. Even if interaction terms 
between the dummy variables and the predictors are 
included (which can be unwieldy with many groups 
and multiple predictors), the two sources of error 
are not modeled properly.

In a two-level multilevel data structure, there are 
two sources of error: one associated with sampling 
Level-1 observations, and the other associated with 
sampling Level-2 observations. For example, in a 
diary study in which observations are nested within 
persons, there is error associated with sampling per-
sons and with sampling days. The error associated 
with sampling persons is well understood, but a 
coefficient representing the within-person relation-
ship between daily stress and daily anxiety for an 
individual also has a sampling error. A coefficient 
that is based on the 2 weeks a study was conducted 
will probably be similar to, but not the same as, a 
coefficient based on another 2-week period. More-
over, the unreliability of such a coefficient (how 
much it might vary across a series of two periods) 
needs to be incorporated into significance tests of 
between-person effects. Studies in which people are 
nested within groups can be understood in the same 
way. Most analysts would recognize that students in 
classes constitute a sample that is meant to represent 
the population of students. In parallel, the classes in 
which those students are nested also need to be con-
sidered as samples representing the population of 
classes. It is including these two sources of error 
simultaneously (the Level-1 error and the Level-2 
error) that renders OLS analyses inappropriate. 
Because of the mathematics involved, OLS analyses 
can estimate only one error term at a time. Estimating 
multiple unknowns (simultaneous errors) requires 
maximum-likelihood estimators, which are the basis 
for the algorithms used by all MLM programs.

For multilevel data, the maximum-likelihood-
based procedures that I discuss in this chapter pro-
vide more accurate parameter estimates than 
comparable OLS analyses, such as using OLS regres-
sion to estimate coefficients for individual Level-2 
units of analysis and using those coefficients in a 
single-level analysis between Level-2 units. The 
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greater accuracy of MLM using maximum-likelihood 
estimators is not hypothetical. It is a demonstrated 
fact on the basis of the results of Monte Carlo stud-
ies in which samples have been drawn from popula-
tions with known parameters. The sample statistics 
that are based on maximum-likelihood procedures 
are more accurate estimates of such population 
parameters than the sample statistic based on com-
parable OLS analyses.

A more detailed discussion of the statistical back-
ground of MLM is well beyond the scope of this 
chapter. A somewhat more detailed discussion of the 
rationale for MLM can be found in Nezlek (2001), 
but the truly curious reader is advised to consult a 
formal text such as Goldstein (2003) or Raudenbush 
and Bryk (2002). A list of suggested readings is pre-
sented at the end of this chapter.

The Basic Models
Consistent with the explanatory framework initially 
offered by Bryk and Raudenbush (1992), I present 
the equations for each level of a model separately. 
Nevertheless, all coefficients at all levels of analysis 
are estimated simultaneously, so the underlying 
model is represented by an equation in which the 
outcome (y) is predicted by the intercepts at each 
level of analysis, the predictors that are included at 
each level, and the error terms.

In the standard nomenclature, Level-1 coeffi-
cients are represented with βs, (subscripted 0 for the 
intercept, 1 for the first coefficient, 2 for the second, 
etc.), and the basic Level-1 model is as follows:

yij = β0j + rij.  (1)

In this model, there are i Level-1 observations 
for j Level-2 groups of a continuous variable y. The 
Level-1 observations are modeled as a function of  
the intercept for each group (β0j, the mean of y in 
group j) and error (rij, which is the deviation of each 
score in a group from the group mean), and the vari-
ance of rij is the Level-1 error variance.

Each Level-1 coefficient is then modeled at Level 
2, and Level-2 coefficients are represented by γs. 
There is a separate Level-2 equation for each Level-1 
coefficient. The basic Level-2 model is as follows:

β0j = γ00 + μ0j.  (2)

In this equation, the mean of y for each of j 
Level-2 units of analysis (β0j) is modeled as a 
function of the grand mean (γ00 − the mean of 
means) and error (μ0j), and the variance of μ0j is the 
Level-2 variance. When these two basic models are 
combined, this is referred to as totally unconditional 
or null because there are no predictors at any level 
of analysis. The value of unconditional models is 
discussed in the section Building a Model.

Predictors can be added to this basic model at 
either level of analysis. Assume a study in which stu-
dents are nested within classes, and the outcome 
measure is a test score. At the within-class (individ-
ual) level, the relationship between test scores and 
hours of study could be examined with the follow-
ing model:

yij = β0j + β1j (Studyij) + rij.  (3)

β0j = γ00 + μ0j.  (4)

β1j = γ10 + μ1j.  (5)

In this model, the intercept of y (β0j) for each of j 
Level-2 classes is modeled as a function of the mean 
intercept (γ00) and error (μ0j), and the slope (β1j) 
representing the within-class relationship between 
scores and studying for each of j classes is modeled 
as a function of the mean slope (γ10 − the average 
relationship across all classes) and error (μ1j).

In MLM, coefficients are tested for significance 
against zero, and in this model, the significance test 
of the mean slope (is the mean slope significantly 
different from zero?) is made at Level 2, via the γ10 
coefficient. If the γ10 coefficient is significantly dif-
ferent from zero, then the null hypothesis is 
rejected. The intercept is also tested for significance 
via the γ00 coefficient—that is, is the mean intercept 
significantly different from zero? The meaning of 
these tests, that is, what the coefficients represent, 
will vary as a function of the measures themselves, 
and most important, the meaning of the intercept 
will vary as a function of how the Level-1 predictors 
are centered, a topic discussed in a separate section.

In MLM, the random error terms for Level-1 
coefficients (the variances of μ0j and μ1j) are also 
tested for significance, and such significance tests 
can be used to make decisions about including or 
excluding random error terms from models. When 
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an error term for a coefficient is included in a model, 
the coefficient is referred to as a random coefficient, 
and when an error term is not included, the coeffi-
cient is referred to as a fixed coefficient. This topic is 
discussed in more detail in the section Modeling 
Random Error.

Predictors can also be added at Level 2. Continu-
ing the example, at the between-class level, the rela-
tionship between test scores and teacher experience 
could be examined with the following model:

yij = β0j + rij.  (6)

β0j = γ00 + γ01 (Experiencej) + μ0j.  (7)

In this model, the mean score for a class (the β0j 
brought up from Level 1) is being modeled as a 
function of the intercept and the experience of a 
teacher. If the γ01 coefficient is significantly different 
from zero, then there is a relationship between a 
teacher’s experience and the average score for stu-
dents in his or her class. Once again, what these 
Level-2 coefficients represent will vary as a function 
of how the Level-2 predictors are centered.

Predictors can be added at both levels of analysis 
simultaneously. Relationships between test scores 
and hours of study could be examined at the individ-
ual level, and in turn, classroom-level differences in 
these relationships could be modeled at the between-
class level as a function of teacher experience. Anal-
yses examining such relationships are sometimes 
called slopes-as-outcomes analyses because a slope 
from a lower level (e.g., Level 1) becomes an out-
come at an upper level (e.g., Level 2).

yij = β0j + β1j (Studyij) + rij.  (8)

β0j = γ00 + γ01 (Experiencej) + μ0j.  (9)

β1j = γ10 + γ11 (Experiencej) + μ1j.  (10)

In this model, the slope for each class (β1j) is 
brought up from Level 1 and is modeled as a function 
of the intercept and the experience of a teacher. If the 
γ11 coefficient is significantly different from zero, 
then the relationship between test scores and study-
ing varies as a function of teacher experience. Note 
that Experience is included in both Level-2 equations, 
a topic discussed in the section Building a Model.

Although there is no absolute standard nomen-
clature, traditionally, in a two-level model, Level-1 

coefficients are represented by βs and are analyzed 
at Level 2 as γs. In a three-level model, Level-1 
coefficients are represented by πs and then βs and γs 
for Levels 2 and 3, respectively. In the popular HLM 
program, the nomenclature was recently changed to 
distinguish models in which persons are nested 
within groups from models in which observations 
are nested within persons. The traditional βs and γs 
are used when people are nested within groups, but 
πs and βs are used when observations are nested 
within people. (In these systems, people are always 
represented by βs.) The models and the results of 
analyses do not vary as a function of which sets of 
letters are used. The distinction is purely 
terminological.

Similar to OLS regression, these multilevel mod-
els are simply templates that can be applied to vari-
ous types of data structure. In a study of therapeutic 
outcomes, clients could be nested within therapists or 
clinics. In diary-style studies, observations (days or 
certain types of events such as social interactions) 
could be nested within persons. In studies relying 
on reaction times, responses can be treated as nested 
within persons and experimental conditions can be 
modeled at the person level. Such applications are 
limited only by the insight of researchers and their 
ability to collect the necessary data.

CONDUCTINg MULTILEVEL ANALYSES

Building a Model
The first model that should be run is a model that 
has no predictors at any level of analysis. These are 
called unconditional or null models, and in some 
cases, variance component models. Such uncondi-
tional models provide the basic descriptive statistics 
for a multilevel analysis. Although unconditional 
models typically do not test hypotheses, they pro-
vide valuable information about how the total vari-
ance of a measure is distributed across the levels of a 
model. Understanding the distribution of variance 
can also provide some ideas about how productive 
analyses at different levels of a model might be. For 
example, if most of the variance of a measure is at 
Level 1, it may be difficult to analyze differences in 
Level-1 means (intercepts) at Level 2. The fact that 
it may be difficult does not imply that it will not be 
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possible. Small amounts of variance at any level  
of analysis may still provide a sufficient basis for  
further analyses at that level. Most multilevel model-
ers agree that Level-1 models should be finalized 
before Level-2 differences in Level-1 coefficients are 
examined. In this instance, finalized refers to the 
selection of predictors and the specification of the 
error structure. Specifying error structures is dis-
cussed in the next section.

Another important recommendation for model 
building is to forward step rather than backward 
step models, particularly at Level 1. Forward step-
ping refers to a process that begins with the simplest 
model to which predictors are added one by one (or 
in small numbers), with tests of significance at each 
step. Predictors that are not statistically significant 
are removed from the model before new predictors 
are added. Backward stepping refers to a process in 
which all possible predictors are added at the outset 
and predictors that are not statistically significant 
are removed sequentially.

Although backward-stepping procedures may be 
fairly common in OLS regression analyses, because 
MLM analyses estimate more parameters than  
seemingly comparable OLS regressions, backward-
stepping procedures may stretch what statisticians 
refer to as the carrying capacity of the data. In 
MLM, the number of parameters that are estimated 
increases nonlinearly as a function of the number of 
predictors. For example, in the basic Level-1 model, 
yij = β0j + rij, three parameters are estimated: a Level-1 
variance, and fixed and random effect for the inter-
cept. If a predictor is added, yij = β0j + β1j (x) + rij, six 
parameters are estimated: the Level-1 variance, a 
fixed and random effect for both the intercept and 
the slope (four parameters), and the covariance 
between the two random effects (one parameter).  
If a second predictor is added, yij = β0j + β1j (x1) + 
β2j (x2) + rij, 10 parameters are estimated: the Level-1 
variance, a fixed and random effect for the intercept 
and the two slopes (six parameters), and the covari-
ances between the three random effects (three 
parameters).

When adding predictors at Level 2, the norm is 
to have (initially) the same Level-2 predictors for 
each Level-1 coefficient. For example, if a Level-1 
model had two predictors, yij = β0j + β1j (x1) + β2j 

(x2) + rij, then three coefficients, the intercept and 
two slopes, would be brought up to Level 2. If a  
Level-2 variable, Z, is used to model the intercept, 
β0j = γ00 + γ01 (Z) + μ0j, then the other coefficients 
(the two slopes) should also be modeled as a func-
tion of Z, for example, β1j = γ10 + γ11 (Z) + μ1j and 
β2j = γ20 + γ21 (Z) + μ2j. One reason for doing this is 
that if Z is not included as a predictor for a coeffi-
cient, it is assumed that there is no relationship 
between that coefficient and Z. Because all coeffi-
cients in a model are being estimated simultaneously 
(including the covariances between coefficients), the 
failure to include a relationship between Z and a 
Level-1 coefficient may lead to a misspecified model.

This discussion of model building has focused on 
the technical aspects of MLM. Of course, exactly how 
an analyst chooses to build a model needs to reflect 
the substantive questions at hand. Nevertheless, 
these guidelines reflect the knowledge and experi-
ence of accomplished multilevel modelers (e.g., Kreft 
& de Leeuw, 1998; Raudenbush & Bryk, 2002).

Modeling Random Error
As discussed, for each coefficient in a model, MLM 
can estimate a fixed and a random error term. The 
fixed term is the focus of most hypotheses. It is an 
estimate of the relationship between a predictor and 
the outcome. Is the coefficient significantly different 
from zero? The random error term reflects the abil-
ity of the algorithm to separate true and random 
error, and a coefficient for which a reliable random 
error term can be estimated is described as randomly 
varying. Although random errors are usually not the 
focus of hypotheses per se, it is important to esti-
mate random errors properly because in MLM all 
coefficients are estimated simultaneously. An 
improperly specified random error structure can 
lead to inaccurate estimates of the fixed effects, or in 
more formal terms, a misspecified model.

For those not familiar with techniques such as 
structural equation modeling (SEM), in which error 
structures need to be described by the analyst, speci-
fying error terms in MLM may be challenging. In  
OLS analyses, there is one error term in a model, 
whereas in MLM, each Level-1 coefficient can have 
its own error term. In a two-level model with a single 
predictor at Level 1, there is an error term for both 
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the intercept and the slope. The simultaneous estima-
tion of such errors is part of the reason MLM pro-
vides more accurate parameter estimates and 
significance tests of coefficients than comparable OLS 
techniques.

Researchers vary in terms of how much they 
model error structures, and the guidelines I discuss 
here may not be normative in all disciplines. Never-
theless, this description should provide a good start-
ing point. At the basic level, I recommend deleting 
from a model error terms that are not statistically 
significant. Statistical significance in this case refers 
to the results of a test in which the null hypothesis is 
that the random error is zero. For most statistical 
tests, an α level of p < .05 is used, but for decisions 
about the inclusion or exclusion of error terms, 
most modelers recommend a more relaxed standard 
such as p < .10. This more relaxed standard reflects 
the fact that, in most cases, the coefficients are theo-
retically random, and they should be modeled as 
such if possible. If a random error term cannot be 
estimated at all reliably to be different from zero (p > 
.20), then it should be deleted from the model so 
that the information contained in the data can be 
used to estimate other parameters.

When a random error term is not modeled for a 
coefficient, the coefficient is described as having been 
fixed. Most important, analysts need to determine 
whether the inclusion or exclusion of a random error 
term makes a difference in the coefficients that are 
the focus of the model—which is usually the fixed 
effects. Perhaps most important, such differences can 
include changes in the results of significance tests of 
the fixed effects. Finally, the addition of Level-2 vari-
ables may change the statistical significance of ran-
dom error terms of the coefficients being brought up 
from Level 1, and when this happens, analysts need 
to determine why this occurred. For example, 
including a Level-2 predictor for a Level-1 slope may 
account for sufficient variance in that slope to render 
nonsignificant a random error term that was statisti-
cally significant without the Level-2 predictor.

There is considerable confusion about what a 
nonsignificant random error term means. In the tru-
est sense, it means that there is not sufficient infor-
mation in the data to separate true (fixed) variability 
from random variability. It does not mean that a 

coefficient does not vary at all. It means that the  
random variability cannot be modeled. This confu-
sion is increased by the fact that when a coefficient 
is fixed, the estimated (fitted) values for that coeffi-
cient will all be the same because no residual esti-
mate has been estimated for that coefficient, and it is 
such estimates that represent random effects.

Regardless, it is possible (and completely accept-
able statistically) to model differences in fixed coef-
ficients. The inability to model random variability 
does not limit one’s ability to model fixed variability. 
If the random error term associated with a Level-1 
coefficient is not significant, the error term can be 
dropped from the model, but this does not preclude 
adding a Level-2 predictor to that part of the model. 
When the variability in a fixed coefficient is mod-
eled in this way, the coefficient is described as non-
randomly varying.

Curious readers can conduct two analyses and 
examine what are called residual files to understand 
this further. The specific content of residual files may 
vary from program to program, but such files typically 
contain various estimated values such as fitted values 
and residual estimates. These data provide a basis for 
understanding the impact of modeling effects as ran-
domly or nonrandomly varying. As discussed, for 
fixed coefficients that are not modeled at Level 2, the 
fitted values will not vary, whereas if a Level-2 predic-
tor is included, the fitted values will vary. The ability 
to model variability in fixed coefficients reflects the 
fact that the information provided by the Level-2 pre-
dictor provides a basis to allow this. Admittedly, there 
are differences between nonrandomly varying coeffi-
cients and randomly varying coefficients whose vari-
ability is modeled at Level 2, but for many purposes, 
these differences are not relevant.

Centering
Centering refers to the reference value used to esti-
mate a slope for a predictor. For analysts whose pri-
mary experience is with OLS regression, centering 
can be a bit difficult to understand. In most OLS 
analyses, predictor variables are centered around the 
sample mean, and the intercept represents the 
expected value for an observation that is at the sam-
ple mean on all the predictors in a model. In con-
trast, within the multilevel framework, different 
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types of centering options are available, and choos-
ing among these options is far from automatic. A 
more detailed discussion of this topic and recom-
mendations for choosing among different options 
can be found in Enders and Tofighi (2007).

At the upper level of analysis in a model (e.g., 
Level 2 in a two-level model and Level 3 in a three-
level model), predictors can be centered in one of 
two ways: grand mean centered and zero centered 
(sometimes referred to as uncentered). Grand mean 
centering is similar to the type of centering repre-
sented by the standardized coefficients in most OLS 
regression analyses. Coefficients reflect relationships 
on the basis of deviations from the total sample 
means of predictors, and the intercept represents the 
expected value for an observation at the total sample 
mean of a predictor or set of predictors.

When a Level-2 predictor is entered uncentered, 
coefficients reflect relationships on the basis of devi-
ations from scores of zero on the predictors, and the 
intercept represents the expected value for an obser-
vation that has a score of zero on a predictor. 
Returning to the students within classes example, if 
sex of teacher was included at Level 2 by using a 
dummy-coded variable Male (coded one for men, 
zero for women, β0j = γ00 + γ01 (Male) + μ0j), and 
Male was entered uncentered, then the Level-2 inter-
cept of intercepts (γ00) would represent the expected 
average score for a class with a female teacher (i.e., a 
teacher for which Male = 0).

At lower levels of analysis (e.g., Level 1 in a two-
level model and Levels 1 and 2 in a three-level 
model), there is a third option: predictors can be 
group mean centered (sometimes referred to as cen-
tered within clusters, or CWC). When a predictor is 
group mean centered, coefficients reflect relation-
ships on the basis of deviations from the group 
mean of a predictor, and the intercept represents the 
expected value for an observation at the group mean 
of a predictor or set of predictors. In this instance, 
the term group refers to a Level-2 unit of analysis 
(in a two-level model). Some use the term CWC  
to reduce the confusion that may occur because  
Level-2 units may not be groups.

Centering is a critical aspect of a multilevel 
model, because the meaning of intercepts and slopes 
can change dramatically as a function of changes in 

centering. In some senses, centering is more critical 
for Level-1 predictors than for Level-2 predictors (in 
a two-level model) because when considering cen-
tering at Level 1, the fact that Level-1 coefficients 
are passed up to Level 2 must be kept in mind. For 
example, assume a study of student achievement (y) 
in which boys and girls are nested within classrooms 
with the following Level-1 model. In this model, 
Male is a dummy-coded variable coded one for boys 
and zero for girls:

yij = β0j + β1j (Male) + rij.  (11)

If Male is entered as an uncentered predictor, the 
intercept represents the expected score for girls in a 
classroom (i.e., when Male = 0). If Male is entered 
grand mean centered, the intercept now represents 
the classroom mean for achievement adjusted for 
between-class differences in the distribution of boys 
and girls. If Male is entered group mean centered, 
then the intercept simply represents the mean for 
each class unadjusted for differences in sex distribu-
tions of classes. Enders and Tofighi (2007, p. 138) 
provided an algebraic explanation of this.

Regarding recommendations for when to use 
what type of centering, Bryk and Raudenbush 
(1992) noted that “no single rule covers all cases” 
(p. 27), so analysts will need to decide how to cen-
ter predictors on the basis of the data they have 
and the hypotheses of interest. Nevertheless, a few 
broad recommendations are possible. Generally, at 
Level 2, continuous predictors should be entered 
grand mean centered. If a continuous measure is 
entered uncentered, then the intercept represents 
the expected outcome for a Level-2 unit that has a 
score of zero on a predictor, something that may 
not make much sense if a scale does not have a 
zero point. If on the other hand, a Level-2 predic-
tor has a valid zero point (or can be transformed so 
that it does, for example, standardizing a measure 
across all Level-2 observations), entering it uncen-
tered makes more sense. Categorical predictors 
(dummy or contrast–effect codes) should usually 
be entered uncentered to maintain the interpret-
ability of the intercept. In general, how predictors 
behave at Level 2 can be thought of in the same 
way that one would think of predictors within the 
context of OLS regression.
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Deciding how to center at Level 1 (and at Levels 1 
and 2 in three-level model) is somewhat more com-
plex because the coefficients from Level 1 will be 
brought up to Level 2. If an analyst is interested in 
what would be the multilevel equivalent of conduct-
ing a regression analysis for each Level-2 unit and 
using the resulting coefficients as dependent mea-
sures in another analysis, then Level-1 predictors 
should be group mean centered. Such analyses take 
out of the model Level-2 differences in Level-1 pre-
dictors. For example, in a study of work groups in 
which individual-level productivity was modeled as 
a function of individual differences in job satisfac-
tion, group-level differences in job satisfaction 
would not contribute to parameter estimates.

Some researchers (e.g., Kreft & de Leeuw, 1998) 
have suggested that when predictors are group mean 
centered such differences should be reintroduced in 
the model by including the means of Level-1 predic-
tors as predictors at Level 2. In contrast, others (e.g., 
Enders & Tofighi, 2007; Raudenbush & Bryk, 2002) 
have not seen the need to include such means at 
Level 2. Regardless, it is important to note that when 
Level-1 predictors are group mean centered, Level-2 
differences in these Level-1 predictors are elimi-
nated from the model, whereas when Level-1 predic-
tors are grand mean centered or uncentered, Level-2 
differences in Level-1 predictors are part of the 
model. Group mean centering holds constant Lev-
el-2 means in Level-1 predictors. At present, it is dif-
ficult to provide a clear recommendation regarding 
this, although it is worth noting that most analysts 
in personality and social psychology (the types of 
analyses with which I am more familiar) do not 
enter the means of group mean centered predictors 
at Level 2. Whether this norm is observed in all dis-
ciplines is another matter. Regardless, analysts who 
are concerned about this should run models with 
and without these means included to determine 
what impact their inclusion or exclusion has on 
their models, with particular attention paid to the 
impact on the substantive questions at hand.

Grand mean centering predictors at Level 1 
adjusts the intercept for each group for group-level 
differences in predictors. At times such adjustments 
make considerable sense. For example, assume  
a school administrator wants to reward teacher  

performance as defined by their students’ success on 
a math test. Further assume that on average boys are 
better than girls in math and that the number of 
boys and girls is not equal across classes. Such a 
combination would mean that teachers who had 
more boys in their classes would have higher aver-
age math scores than teachers who had fewer boys, 
assuming that all teachers were equally competent 
(i.e., that teacher characteristics were not related to 
math achievement). If some type of coded variable 
representing student sex was entered grand mean 
centered at Level 1, the average score in each class 
(the intercept) would then be adjusted for differ-
ences between classes in the number of boys and 
girls, allowing our administrator to have an estimate 
of student performance that was not confounded by 
differences in the gender composition of classes.

When Level-1 predictors are grand mean cen-
tered, it is incorrect to use reductions in error vari-
ances to make judgments about the strength of 
Level-1 relationships. When Level-1 predictors are 
grand mean centered, between group (Level-2) vari-
ance is introduced into the Level-1 model, meaning 
that relationships at Level 1 reflect a mix of vari-
ances at both levels of analysis. Finally, Level-1 pre-
dictors can be entered uncentered causing the 
intercept to represent the expected value in each 
group for an observation with a value of zero on the 
predictor. This is analogous to how centering effects 
the intercept in Level-2 models.

Interactions
Within the multilevel framework, interactions can 
occur either between or within levels. Between-level 
interactions (sometimes referred to as cross-level 
interactions or cross-level moderation) occur when 
a relationship at a lower level of analysis varies as a 
function of a measure at a level of analysis above it. 
In a diary study, a Level-1 (within-person) relation-
ship might vary as a function of a Level-2 (person 
level) variable, such as a personality characteristic. 
Different programs have different procedures to 
conduct such slopes-as-outcomes analyses, but 
assuming the same model is being tested, different 
programs will provide the same results. Such cross-
level interactions were discussed in the section on 
basic models.
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Testing interactions among predictors at the top 
level of a model is pretty much the same as testing 
interactions within OLS regression, and analysts are 
advised to consult Aiken and West (1991). In such 
cases, the dependent measure is simply a coefficient 
brought up from a lower level of analysis.

Testing interactions among predictors that are all 
at the same lower level of analysis (e.g., all at Level 1 
in a two-level model) is conceptually similar to test-
ing interactions at the top level of analysis, but there 
are important procedural differences. Consistent 
with the recommendations of Aiken and West 
(1991), for categorical predictors, I recommend sim-
ply multiplying them and entering the product 
uncentered into the model. This can help clarify the 
results because the intercept remains the expected 
value for an observation with a value of zero on the 
predictors.

Aiken and West (1991) recommended centering 
continuous measures before multiplying them to 
create interaction terms. Consistent with this, my 
recommendation is to center continuous Level-1 
measures within their corresponding Level-2 unit. If 
they are not centered at all, problems can arise (e.g., 
in the multilevel setting, colinearity among error 
terms). If they are grand mean centered, then  
Level-2 variability in the Level-1 predictors is intro-
duced into the Level-1 interaction term.

The procedures for creating such interaction 
terms varies from program to program. For example, 
in HLM, within-level interaction terms (within any 
level of analysis) need to be created outside of the 
HLM program and read into the data file the pro-
gram uses for analysis. When interaction terms 
involving such centered continuous measures are 
entered into an analysis, I recommend entering 
them uncentered because the centering has already 
taken place. Moreover, entering variables represent-
ing interactions uncentered, when combined with 
group mean centered predictors, simplifies the cal-
culation of predicted values. An example of testing 
within-level interactions using these guidelines can 
be found in Nezlek and Plesko (2003).

Testing within-level interactions within the  
multilevel framework has not received that much 
attention in the literature, but the recommendations 
I provide here are consistent with what many  

consider to be good practice. Norms about best 
practice may vary across disciplines, but the issues I 
address here should provide, at the least, a good 
starting point.

Model Diagnostics and Model Fits
Occasionally, models will not converge. Similar to 
SEM and other techniques that estimate solutions, 
the maximum-likelihood estimation algorithms that 
are at the heart of MLM programs fit a model (a set 
of estimated coefficients and parameters) and then 
change these estimates to improve the fit of the 
model—to get the model to fit the data more closely. 
When improvements of a certain size are reached, 
the algorithm stops. The size of the improvement 
that stops the algorithm is known as the conver-
gence criterion. Sometimes, this convergence crite-
rion cannot be reached, and an analysis will keep 
running until a certain number of iterations are 
reached. Virtually all programs allow the user to 
specify the convergence criterion and the number of 
iterations. Although there is no hard and fast rule, 
solid models will often converge in a few hundred 
iterations or less.

My experience is that problems with model con-
vergence invariably reflect some type of problem 
with estimating error terms, most often, error terms 
that cannot be estimated reliably. What occurs is 
that the program is trying to make improvements 
when improvement is not possible, and it gets 
caught in a loop (sometimes a local minimum). 
Occasionally (but not commonly), convergence 
problems are due to very high correlations between 
error terms. Although each of a pair of error terms 
might be able to be estimated reliably, if the correla-
tion between them is too high, the algorithm will get 
stuck. In my experience, such problematic correla-
tions are very high, .98 and higher.

When convergence problems are due to a bad 
error term, error terms than cannot be estimated 
reliably can be dropped from the model. The remedy 
is not so straightforward when convergence prob-
lems are due to an inestimable error covariance and 
both the error terms involved in the problematic 
covariance are significant. Some programs (e.g., 
MlwiN) allow the fixing of specific error covari-
ances, and fixing a covariance would solve such a 
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problem. If an analyst does not want to fix a covari-
ance, then one of the error terms creating the prob-
lem can be dropped. Deciding which term to drop 
can be done on the basis of the impact dropping the 
term has on the model—less impact being more 
desirable than more impact. At times, such problems 
can be due to differences in scales (e.g., some scales 
have very large variances compared with other) or 
colinearity between scales.

Although the advent of high-speed computing 
means that even models that require thousands of 
iterations to converge will run fairly quickly (a mat-
ter of minutes at most), analysts may want to termi-
nate an analysis before convergence and examine 
the output to determine why a model is having 
problems converging. My experience has been that 
premature termination has virtually no effect on the 
fixed effects in a model when convergence problems 
are due to problems with the error structure. For 
example, the fixed effects may be virtually identical 
for models that have run through 500 and 2,500 
iterations, and so “early” models can be examined 
for problems with error structures.

Models may also not work because of problems 
with the fixed effects. Such problems are not estima-
tion problems per se; rather they are more struc-
tural. Similar to OLS regression, if predictors are 
linearly dependent, a model will not converge. For 
example, a model will not run if a dependent mea-
sure, y, is predicted by x, z, and x + z. Most analysts 
will be experienced enough to avoid problems 
caused by the colinearity resulting from using linear 
combinations of variables in an analysis, but ana-
lysts may encounter such problems when they retain 
the intercept in what is meant to be a zero-intercept 
model. When fitting zero-intercept models, analysts 
need to be certain to delete the intercept—hence the 
other term for such models, no-intercept. Some 
applications of zero-intercept models can be found 
in Nezlek (2003, 2007b).

Although MLM analyses provide measures of 
overall model fit (a deviance statistic), unlike within 
the SEM tradition, fit indexes do not figure promi-
nently in the evaluation of MLM results. In MLM, 
the emphasis is less on the overall fit of the model 
(i.e., how well a model captures all of the hypothe-
sized relationships among a set of measures) than it 

is on specific coefficients—for example, is the rela-
tionship between two Level-1 variables significant, 
does it vary as a function of a Level-2 variable, and 
so forth? There are situations in which the fits of dif-
ferent models need to be compared (e.g., to compare 
error structures), and deviance statistics can be used 
when this is necessary, but a discussion of such pos-
sibilities is well beyond the scope of this chapter. 
See Raudenbush and Bryk (2002) for a discussion of 
the questions that can be addressed by comparing 
the fits of different models.

SELECTED TOPICS

Missing Data
In terms of the practicalities of setting up data files 
and models, different programs treat missing data in 
somewhat different fashions. For example, in the 
program HLM, when creating the system file that is 
used for analyses (the MDM file) missing data are 
allowed at Level 1 of two- and three-level models 
but are not allowed at Level 2 of a two-level model 
or at Levels 2 and 3 of three-level models. It is possi-
ble to include level units of analysis in the system 
file that have missing data at Level 1, and such units 
will be excluded from any analysis in which that 
measure is included. For example, assume a study in 
which workers are nested within work groups with 
four measures for each worker. If one of these mea-
sures is missing, that worker can be included in 
analyses that do not include that missing measure. 
Earlier versions of the HLM program had an option 
to use all possible pairs of a set of observations, but 
that option has been removed from more recent ver-
sions. In HLM, it is also possible to eliminate from 
the system file cases that have any missing data, 
which will ensure that all results are based on 
exactly the same data. In HLM, at upper levels of a 
model, missing data are not allowed, and units of 
analysis that have missing data are not included in 
the system file.

In contrast, in MLwiN, cases with missing data 
are excluded on an analysis-by-analysis basis. Cases 
that have missing values are excluded from an anal-
ysis in which the variable that is missing is included. 
Most important, if a Level-2 unit has a missing value 
on a variable that is included in a model, all the  
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Level-1 cases associated with that Level-2 unit are 
eliminated from the analysis. Analysts are encour-
aged to determine exactly how the software they are 
using treat missing data.

Regardless of how a program treats missing data, 
analysts may want to estimate missing data to maxi-
mize the number of observations that are included 
in an analysis. Such estimation is particularly impor-
tant when data are missing for units of analysis at 
upper levels in a model (e.g., at the person level in a 
two-level analysis of diary data) because when an 
upper level unit is excluded, all the lower level units 
underneath that upper level unit are excluded. (For 
a discussion of estimating missing data, see Chapter 
2 of this volume.)

Irrespective of the software being used, it is 
important to recognize that missing data within the 
multilevel context are not missing units of analysis, 
even though within other analytic frameworks miss-
ing units of analysis might be treated as missing data. 
For example, in a diary study in which participants 
are asked to provide data for 14 days, within the 
MLM framework, a participant who provided only 10 
days of data would not be considered to have 4 days 
of missing data. Just as classes might have different 
numbers of students, individuals can have different 
numbers of diary entries (days, interactions, etc.). 
The available Level-1 observations are simply nested 
within the corresponding Level-2 observations.

Perhaps most important in terms of missing data 
is understanding why observations are missing. For 
example, are people who provide only 10 of 14 days 
of data in a diary study different from (in some mean-
ingful way) people who provide 14 days of data? In 
this specific instance, a person-level (Level-2) vari-
able could be included in a model and it could be 
determined whether the absence of data was related 
to coefficients of interest. Handling missing data is a 
complex topic, and for present purposes, it will need 
to suffice to recognize that simply because MLM can 
accommodate differences in the numbers of Level-1 
observations that are nested within Level-2 units does 
not mean that such differences can be ignored.

Standardization
By design, MLM analyses produce unstandardized 
estimates of coefficients. As far as I know, no  

program has the option to produce standardized 
estimates. Moreover, although procedures to stan-
dardize coefficients have been proposed (e.g., divid-
ing a coefficient by some type of variance estimate), 
such procedures are probably, at best, at the edge of 
being justified statistically. Nevertheless, there are 
ways to reduce the influence on parameter estimates 
of differences in the variances of measures, which 
makes coefficient more readily comparable.

Standardizing Level-2 variables is fairly straight-
forward and puts all continuous Level-2 measures 
on the same metric. In studies when observations 
are nested within persons (e.g., diary studies), this 
could entail standardizing trait measures such as the 
FFM, and the same type of standardization could be 
used when Level-2 units are not persons (e.g., clin-
ics, schools, or work groups). Analysts will need to 
make such decisions about such matters on the basis 
of what makes sense within their home disciplines. 
For example, standardizing measures of personality 
at Level 2 is probably easily understood by personal-
ity psychologists who may be accustomed to inter-
preting regression analyses by estimating predicted 
values +/−1 standard deviation (SD) from the mean. 
One of the advantages of standardization at Level 2 
is that coefficients for Level-2 predictors represent 
the change in a Level-1 coefficient associated with a 
1-SD increase in the Level-2 predictor. Another 
advantage to standardizing Level-2 measures is that 
differences in the variances of Level-2 predictors do 
not contribute to significance tests of differences 
between Level-2 coefficients.

Standardizing Level-1 variables is not quite so 
straightforward. Simply standardizing in terms of 
the total population equates the total variances of 
different predictors; however, it does not equate the 
distribution of these variances. Moreover, analysts 
need to be mindful of the fact that when measures 
are standardized in terms of the total sample, enter-
ing a predictor uncentered is equivalent to entering 
it grand mean centered. Analysts are advised to 
avoid standardizing Level-1 variables within Level-2 
units. For example, if students were nested within 
schools, it would not be appropriate to standardize 
scores within each school. The reason for this is that 
standardizing in this fashion eliminates from the 
model differences between Level-2 units in Level-1 
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measures, and such differences can be important 
sources of information. In general, covariance  
modelers prefer to work with raw data rather than 
standardized data because raw data have more 
information.

Weighted Analyses
Although assigning weights to observations is not 
common practice for many psychological research-
ers, it is a necessity for some. If a researcher is inter-
ested in making inferences about populations from 
which nonrandom samples have been intentionally 
drawn (e.g., certain groups have been intentionally 
oversampled), the fact that the sample is intention-
ally nonrepresentative may need to be taken into 
account. Within the multilevel framework, such a 
possibility can exist at each level of analysis. For 
example, in a study of schools, private schools may 
be oversampled relative to public schools to provide 
an adequate basis for drawing inferences about pri-
vate schools. At the individual level, members of 
minority groups (defined in various ways such as 
ethnically, those with a specific diagnosis, etc.) may 
be oversampled to provide a basis for inference. The 
weights that are assigned to units at one level of 
analysis have nothing to do with the weights that are 
assigned to units at another level of analysis. Ana-
lysts who want to weight observations will need to 
specify weights when they analyze their data. 
Exactly how to do this will vary from program to 
program, but the results of the analyses from differ-
ent programs will be the same because this is a well-
understood aspect of MLM.

Power Analysis
Despite the growth in popularity of multilevel mod-
els, estimating the power of multilevel data struc-
tures is still poorly understood. Certainly, the rule 
that more observations provide more power holds, 
but questions remain about how many Level-1 and 
Level-2 units are needed to test different types of 
hypotheses. This lack of understanding is primarily 
due to the fact that MLM analyses estimate so many 
different parameters that it has been difficult to 
determine how the power to detect each of these 
parameters varies as function of the design.  
Moreover, some discussions of power concern the 

cost-to-benefit ratios associated with increasing 
observations at Level 1 versus increasing observa-
tions at Level 2, and cost is literally measured mone-
tarily. Such discussions may not be particularly 
valuable to those for whom such monetary consider-
ations are not important. For those interested in 
more specific recommendations, I recommend Rich-
ter (2006) and Scherbaum and Ferreter (2009), who 
provided cogent summaries of various rules of 
thumb, with Scherbaum and Ferreter covering the 
topic more thoroughly than Richter because their 
article focuses solely on power.

Given the lack of consensus regarding this mat-
ter, I offer the following informal recommendations. 
When thinking of the power of a multilevel design, 
keep in mind that as a general rule, intercepts are 
invariably more reliable than slopes, making them 
easier to model, particularly when there are cross-
level effects. Next, start by thinking about power 
within a comparable single-level design. How many 
observations would you need to find a medium or 
small effect? Within this framework, think of the 
Level-1 slope in terms of a correlation of a certain 
size—with smaller, less reliable coefficients corre-
sponding to smaller correlations, and larger, more 
reliable coefficients corresponding to larger correla-
tions. In terms of examining cross-level interactions, 
note that two criteria are used to evaluate how easy 
it will be to model differences in slopes—how large 
a slope is and how reliable it is. It is such complexity 
that makes it difficult to provide unambiguous 
guidelines about power. If you are interested solely 
in Level-1 relationships, the fact that you may have 
numerous Level-1 observations nested within  
Level-2 observations will provide a good basis to 
estimate some parameters, but a lack of Level-2 
units will interfere with your ability to estimate the 
random effects associated with the Level-1 coeffi-
cients and may provide weaker tests of fixed effects.

Effect Size Estimation
Often, researchers want to describe their results in 
terms of what are commonly called effect sizes, 
which, in the OLS framework, are based on variance 
estimates. For example, a correlation of .5 can  
also be explained in terms of the fact that two mea-
sures share 25% of their variance. Within the OLS 
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framework, estimating effect sizes using such shared 
variances or reductions in variance from one model 
to another is well understood and not particularly 
controversial.

In contrast, within the multilevel context,  
estimating effect sizes through the use of shared 
variances or reductions in variance is neither 
straightforward nor noncontroversial. To provide a 
context for this, discussion, I will quote Kreft and de 
Leeuw (1998) who noted that “in general, we sug-
gest not setting too much store by the calculation of 
RB2 [Level-2 variance] or RW2 [Level-1 variance]” 
(p. 119). Part of the difficulty in relying on random 
error terms to estimate effect sizes is that an addi-
tional significant predictor can be added to a model 
and the Level-1 random error term may not change. 
In unusual cases, it could increase.

Within the OLS framework, such a situation is 
not possible. For OLS analyses, significance tests are 
based on reductions in residual variances, and if a 
predictor is statistically significant, some reduction 
in residual variance needs to be associated with the 
inclusion of this predictor in a model. Within the 
multilevel framework, significance tests of the fixed 
effects and estimates of random errors are calculated 
in separate (albeit related) algorithms. So, it is 
entirely possible for a Level-1 predictor to have a sig-
nificant fixed effect but whose inclusion in the model 
is not associated with any decrease in random error.

Despite the possible problems with estimating 
effect sizes using random error terms, researchers 
may still want to do so. In such cases, I urge analysts 
to be cautious and to remain aware of the problems 
discussed thus far. Moreover, when estimating effect 
sizes for Level-1 models, predictors should be 
entered group mean centered (e.g., Kreft & de Leeuw, 
1998). If predictors are entered grand mean centered 
or uncentered, Level-2 differences in the predictors 
will contribute to the Level-1 variance estimates.

Estimating effect sizes in MLM uses calculations 
that are similar to those used in OLS analyses. A 
reduction in variance between two models is calcu-
lated, and the difference is divided by the variance in 
the first (presumably larger) model. This needs to be 
done separately at each level of analysis, and if mul-
tiple coefficients are brought up from a lower level 
of analysis, such estimates need to be made for each 

coefficient. If a Level-1 coefficient is modeled as 
fixed (i.e., no random error terms are estimated for 
it), effect sizes cannot be estimated using variance 
reductions because there is no variance to reduce.

Using Coefficients Estimated by MLM  
in Other Analyses
Most MLM programs allow analysts to save the esti-
mated coefficients from analyses, providing the 
opportunity to use these coefficients in other analy-
ses, for example, a cluster analysis to identify clus-
ters of Level-2 units on the basis of coefficients. 
Although technically possible, such analyses may 
not be optimal because when estimated coefficients 
are used outside of the multilevel framework this 
does not take advantage of, or take into account, the 
sampling error at all levels of analysis. There may be 
instances in which such uses are unavoidable, that 
is, there may not be a way to examine the hypothe-
ses of interest within the multilevel framework. 
Nevertheless, analysts are encouraged to find ways 
to examine their questions of interest within the 
multilevel framework.

Nonlinear Analyses
Thus far, MLM has been discussed in terms of con-
tinuous, linear dependent measures, and continu-
ous, linear measures are probably the most common 
type of outcome with which psychologists are con-
cerned. Nevertheless, there are many instances in 
which outcomes of interest are nonlinear. They 
could be categorical, for example, recidivism (yes or 
no), or they could be continuous but not normally 
distributed, for example, count data such as peer 
nominations of students in classrooms.

Analyses of nonlinear outcomes require special 
techniques that take into account the fact that such 
outcomes violate a critical assumption of MLM—the 
independence of means and variances. For example, 
the variance of a binomial outcome is Npq, where N 
is the number of observations, p is the probability of 
the event, and q is 1 − p. Other types of nonlinear 
outcomes (e.g., multinomial outcomes) also violate 
this assumption. In terms of MLM, this means that 
the variance of a Level-1 outcome for a Level-2 unit 
will vary as a function of the mean outcome within 
each Level-2 unit.
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Similar to the need to conduct logistic regression 
for nonlinear outcomes in single-level data struc-
tures, MLM analyses of nonlinear outcomes require 
techniques that eliminate the relationships between 
means and variances. The underlying logic of mod-
eling nonlinear outcomes is the same as that for 
liner outcomes, but the algorithms differ, and the 
specific algorithms vary as a function of the type of 
outcome. For example, analyzing a dichotomous 
outcome requires the following (Bernoulli) model at 
Level 1:

Prob(y = 1|β0j) = Φ. (12)

In this model, a coefficient, representing the 
probability of y is then converted to an expected log-
odds (Log[Φ/(1 − Φ)]), and an expected log-odds is 
estimated for each Level-2 unit. These log-odds are 
then analyzed at Level 2 just as coefficients are for 
continuous measures, and similar to the analyses of 
continuous measures, predictors can be added at all 
levels of analysis.

Unfinished Business
A chapter such as this cannot cover all aspects of 
MLM, and I offer brief comments about a few  
topics that we could not cover in detail. Moderation 
within the multilevel framework can be understood 
within the previous discussion of interactions. Medi-
ation is a much more complex topic, and at present, 
the best source for advice about how to do this is 
Bauer, Preacher, and Gil (2006). Understanding 
how to estimate the item-level reliability of mea-
sures administered within the multilevel context is 
poorly understood. Reliability estimates can be 
wildly inaccurate unless the nested nature of the 
data is taken into account. For example, when mea-
surement occasions are nested within persons, it is 
not appropriate to estimate reliabilities on the basis 
of means aggregated across occasions because this 
confounds within- and between-person variances. It 
is also not appropriate to calculate the reliability for 
each day of a study and then average the reliability 
coefficients because this assumes that days can be 
matched across people, when a basic underlying 
assumption of the model is that days are randomly 
sampled. The appropriate method is to conduct a 
multivariate MLM in which the items for a scale are 

nested within occasions that are nested within peo-
ple. The reliability of the Level-1 intercept is the 
item-level reliability. This topic is discussed in 
Nezlek (2007b).

In MLM, it is possible to compare any coeffi-
cients (or sets of coefficients) using what are called 
tests of fixed effects, which are basically tests of con-
straints on a model. For example, assume a Level-1 
model with two predictors, yij = β0j + β1j (x1) + β2j 
(x2) + rij. The strength of the relationship between y 
and x1 can be compared with the strength of the y − 
x2 relationship by examining the impact on the fit of 
a model of constraining these coefficients (γ10 and 
γ20) to be equal. If the constraint significantly 
reduces the fit, then the coefficients are not equal. 
Such comparisons are influenced by the scales (vari-
ances) of the predictors, that is, they are not stan-
dardized. When predictors have meaningfully 
different variances, analysts may want to transform 
them to reduce differences in variances. Such tests 
can also be used in conjunction with dummy- and 
contrast-codes combined with different types of cen-
tering options to examine differences across the dif-
ferent categories of a categorical predictor. A 
discussion of a few ways of doing this is provided in 
Nezlek (2003).

DETERMININg THE MULTILEVEL 
STRUCTURE OF A DATA SET

How Many Levels?
In most instances, deciding about the multilevel 
structure of a data set should be fairly straightfor-
ward. Studies of students nested within class-
rooms, or days nested within persons, or clients 
nested within clinics are all straightforward two-
level models. But what if classrooms are also 
nested within schools, persons are also nested 
within groups of some kind (e.g., culture), and 
clinics are also nested within counties? Should 
each of these be conceptualized as a three-level 
model? Unfortunately in terms of simplicity’s sake, 
the answer is “perhaps.”

There are two important factors that need to be 
considered when deciding whether to treat observa-
tions as nested. First, is there a reason to believe that 
there is some dependency among observations? For 
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example, does the county in which a clinic is located 
really matter in terms of how measures might vary 
or covary? If it does, then county-level effects 
should be considered. Second, how many units of 
analysis are there at each level of analysis? When 
considering this question, it is important to keep in 
mind that within a multilevel model, each level of 
analysis represents a sample from a population. If 
we have clinics nested within counties, before decid-
ing whether to include county as a level of analysis, 
we need to consider whether the number of counties 
we have constitutes a sample that can be used to 
make an inference to the population of counties. 
Even if county was conceptually a random variable, 
two counties would not provide a basis to model the 
random effect of county, whereas 10 might. Such 
decisions need to be made on a case-by-case basis.

There are ways to examine differences across 
units of analysis even if there are not enough units 
to constitute a level of analysis. In some cases, this 
may mean conducting analyses that are not formal 
MLM but that do take into account the possibility 
that relationships between measures vary across 
units of analysis. For example, if a cross-culturalist 
has data from 100 people in two cultures, there are 
not enough cultures to conduct MLM with people 
nested within cultures, but other types of analyses 
can be done—see section Other Types of Multilevel 
Analyses.

In other cases, levels of analysis that one might 
want to distinguish but for which there are not 
enough observations can be represented in another 
level of analysis. For example, in Nezlek et al. (2008), 
we collected daily diary data for people in four cul-
tural groups. The planned analyses were three-level 
models, days nested within people who were nested 
within cultures. Unfortunately, the four cultures we 
had did not provide a sufficient basis to estimate ran-
dom effects for culture for the coefficients of interest. 
In other words, we did not have enough cultures to 
generalize to the population of cultures. In light of 
this, culture was represented as an individual-level 
variable with a series of dummy codes, and we were 
then able to compare various coefficients across cul-
tures using tests of fixed effects.

The substantive difference between the analyses 
we did and the planned (three-level) model is that in 

the two-level model, country was treated as a fixed 
effect. Technically speaking, this meant that the 
inference space of our analyses was limited to the 
four groups from which we obtained data. Although 
we were able to compare coefficients for these 
groups, we could not model (i.e., predict) such dif-
ferences in a formal way. We were able to establish 
the fact that the cultural groups differed, but we 
could not explain (statistically) the variability 
among the groups.

When deciding about the structure of an analy-
sis, it is important to keep in mind that at least two 
lower level observations are needed for each upper 
level unit. For example, in a two-level group study, 
a group needs at least two people, in a diary study, 
people need to provide at least 2 days of data, and so 
forth. If an upper level unit of analysis has only one 
lower level observation nested within it, there is no 
nesting—there is no way to separate relationships at 
the different levels of analysis because the sampling 
is confounded. Level-2 units that have only one  
Level-1 observation will be included in an analysis, 
but they will not contribute to estimates of vari-
ances. If an analyst has a data set in which a mean-
ingful majority of Level-2 units have only one 
Level-1 observation, it might be appropriate to con-
sider whether an MLM is appropriate.

Decisions about how many levels of analysis to 
use often reflect the tension between the law of par-
simony (less is more), and the need to account for 
dependencies among observations. In the previous 
clinics within counties example, if I had 15 or 20 
counties, I would probably nest clinics within coun-
ties simply to take into account any dependency that 
might exist. On the other hand, sometimes more 
levels provides no advantage. The data presented in 
Nezlek and Gable (2001) were originally conceptu-
alized as a three-level multivariate MLM (items for 
different measures nested within days nested within 
persons), but we presented the results of two-level 
univariate MLMs because the results of the simpler 
two-level models were functionally equivalent to the 
results of the more complicated three-level multivar-
iate models.

It is not possible to provide rules that cover all 
cases. In most cases, the number of levels that 
should be used will be obvious. When it is not, 
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researchers will need to make decisions on the basis 
of previous practice, their knowledge of the subject 
matter, and perhaps preliminary analyses describing 
how important it is to take into account different 
sources (levels) of variance.

At What Level Should a Construct  
Be Represented?
In most cases, deciding the level of analysis at which 
a measure should be placed is straightforward. For 
example, if workers are nested within groups, then 
worker-level variables such as time on the job would 
be Level-1 variables, and group-level measures such 
as group size would be Level-2 variables. In a daily 
diary study, day-level data such as daily stressors 
would be Level-1 data, and person-level data such as 
personality traits would be Level-2 data.

There may be times when assigning a measure to 
a level of analysis is not so straightforward. For 
example, in a study in which students are nested 
within classes, at what level should student sex be 
included? If classes have both boys and girls, then 
student sex is a Level-1 variable. In contrast, if 
classes are sexually segregated, then student sex 
would be a Level-2 (or classroom-level) variable.

The critical issue is the extent to which a mea-
sure varies within a Level-2 unit of analysis. If it 
does not vary, it is de facto, a Level-2 variable. 
Although sex is an individual characteristic, if 
classes are sexually segregated, then for statistical 
purposes, sex is a classroom-level characteristic, 
similar to variables measuring the teacher of a class. 
Just as all the students in a particular classroom 
have the same teacher (part of the dependency cap-
tured by MLM), if all the students in a class are of 
the same sex, then sex becomes a classroom-level 
variable.

The situation becomes a bit more complicated 
when some classes are single sex and some are 
mixed sex. In such cases, sexual composition can 
still be used as a Level-2 predictor (e.g., all male, all 
female, mixed) but not always in combination with 
a Level-1 variable representing student sex (e.g., a 
dummy code for males). If sexual composition is 
coded as a continuous variable at Level 2 (e.g., per-
cent of males), then a Level-1 variable representing 
student sex can be included in the same model.  

In contrast, if sexual composition is coded as a  
categorical variable at Level 2 (e.g., all male or not), 
then a Level-1 variable representing student sex can-
not be included in the same model because it will 
create a linear dependence between the Level-1 and 
Level-2 predictors.

Similarly, measures that represent some type of 
aggregation of Level-1 measures are treated as  
Level-2 measures. For example, if a measure of 
group cohesion that is based on the similarity of 
scores of the individuals within a group is calculated 
for each group, then such a cohesion measure is a 
Level-2 measure—it is the same for all members of a 
group. The measure that served as the basis for the 
measure of cohesion is still treated as a Level-1 vari-
able because there is within-group variability.

CROSS-CLASSIFIED AND MULTIPLE 
MEMBERSHIP ANALYSES

So far, this chapter has concerned nested data struc-
tures in which the nesting is straightforward and con-
sistent. Students have been treated as nested within a 
classroom or a school, clients as nested within a ther-
apist or clinic, and so forth. Nevertheless, students 
can change schools, and clients can change therapists. 
Within MLM, when the Level-2 unit within which a 
Level-1 observation is nested changes, this is called 
multiple membership. In contrast, cross-classification 
occurs when a Level-1 unit cannot be uniquely classi-
fied into two different classification schemes. The 
classic example of this is when students are treated as 
nested within schools and schools are treated as 
nested within neighborhoods, but some schools have 
children from different neighborhoods. There are 
modeling techniques that are appropriate for cross-
classified and multiple membership data, and the 
details of how to conduct and interpret such analyses 
are beyond the scope of an introduction such as this. 
Interested readers are encouraged to consult Rauden-
bush and Bryk (2002) and Rasbash, Steele, Browne, 
and Goldstein (2009) for details.

Nevertheless, when the number of cross-classified 
or multiple membership cases is very small it may be 
appropriate to drop such cases to simplify the analy-
ses. Such a procedure should be followed cautiously, 
however, and disclosed fully in any description of 
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the analyses of the data in question. For example, 
multiple membership may be a meaningful  
datum in and of itself. Dissatisfied clients may be 
more likely to switch therapists than satisfied cli-
ents. If such is the case, analyses that did not  
include multiple membership clients could provide 
biased parameter estimates. The extent of such a 
bias would depend on the number of cases that  
were dropped.

WHEN TO USE AND NOT TO USE 
MLM: RELYINg ON INTRACLASS 
CORRELATIONS

Among some scholars (particularly it seems, those 
concerned with organizational psychology and 
related topics) there is an active debate about when 
to use MLM on the basis of the intraclass correla-
tions (ICC) for a set of measures. The ICC is a ratio 
of the between-unit variance (Level-2 variance) to 
the total variance (Levels 1 and 2 combined). The 
argument (more or less) is that if there is not enough 
between-group variance (i.e., the ICC is low) for a 
measure or set of measures, then the grouped struc-
ture of the data can and should be ignored.

My advice regarding when to use multilevel anal-
yses is quite simple and contrasts sharply with this 
position. Multilevel analyses should be used when a 
researcher has a multilevel (or nested) data struc-
ture of some kind. Full stop. Although apparently 
sensible, recommendations about when to use MLM 
on the basis of ICCs are not made on the basis of 
sound statistical practice or theory.

First, and perhaps foremost, ICCs provide no 
indication about how relationships between vari-
ables might vary across groups. Such a possibility is 
represented in the data presented in Table 11.3. 
Assume six groups of individuals, each measured on 
two variables, X and Y. In the data presented in the 
table, the ICC for both measures is zero. There is no 
between-group variability in either measure, and the 
mean for both variables is 15 in all groups. If you 
ignore the nested structure of the data and treat  
the observations as individual observations, the cor-
relation between X and Y is zero. Moreover, if you 
add a dummy-coded variable representing group 
membership—the LSDV approach described in the 

section Analytic Strategies for Analyzing Multilevel 
Data—the estimated relationship is still zero.

Nonetheless, inspection of these data reveals that 
the relationship between X and Y is not zero. It is 
perfectly negative in Groups 1, 2, and 3, and per-
fectly positive in Groups 4, 5, and 6. Admittedly, 
such variability in relationships could be captured 
by including interaction terms between each of the 
predictors (we can assume the variable X in this 
case) and each of the dummy variables. Aside from 
the awkwardness of such procedures (imagine the 
model generated with a study of 12 groups with 
three predictors), such analyses are flawed because 
they do not take into account the sampling error 
inherent in a study in which units of analysis are 
sampled from two populations simultaneously—for 
example, the group and individual levels.

In addition, it is important to keep in mind that 
ICCs represent ratios of variances. Even when an 
ICC is low, there may still be meaningful (absolute) 
variance at the group level for a data set. Finally, 
what should the cutoff be for deciding when to use 
MLM: .20, .15, .30? Any cutoff is arbitrary and is 
difficult to justify statistically. No doubt, recommen-
dations to ignore the grouped structure of a data set 
when ICCs are low are well intended. Why use a 
more sophisticated technique such as MLM when a 

TABLE 11.3

Intraclass Correlations and Within-group 
Relationships

Group 1 Group 2 Group 3

X Y X Y X Y
13 17 13 17 13 17
14 16 14 16 14 16
15 15 15 15 15 15
16 14 16 14 16 14
17 13 17 13 17 13

Group 4 Group 5 Group 6

X Y X Y X Y
13 13 13 13 13 13
14 14 14 14 14 14
15 15 15 15 15 15
16 16 16 16 16 16
17 17 17 17 17 17
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more familiar and more accessible technique such as 
OLS regression will suffice? Although such advice 
may have been appropriate at one time, given the 
growing familiarity with MLM and the increased 
accessibility of programs that can conduct MLM, 
researchers should use MLM to analyze their data 
whenever possible. I discuss in the next section 
other ways to analyze nested data structures when it 
is not appropriate to use MLM.

ANALYzINg MULTILEVEL DATA 
STRUCTURES WHEN MLM MAY NOT  
BE APPROPRIATE

Although I am a strong advocate of using MLM to 
analyze nested data structures, there are times when 
data are nested and it is not possible to conduct the 
types of multilevel analyses this chapter concerns. 
For example, assume a researcher collects data at 
the individual level in three cultural groups. Techni-
cally, such a data structure would call for a two-level 
model in which individuals were nested within cul-
tures. Although an MLM might be able to be fitted 
to the data (i.e., an MLM program might be able to 
analyze the data), MLM would not be appropriate 
for such a data set because there are not enough  
Level-2 observations (cultures). Recall that we con-
sidered the fact that in a multilevel data structure, 
observations are simultaneously sampled from two 
populations: the population represented by the  
Level-1 sampling (people in this example), and the 
population represented by the Level-2 sampling  
(cultures in this example). Three cultures is simply 
not enough to provide a reasonable basis for making 
inferences about differences among the population 
of cultures. Admittedly, differences among the spe-
cific countries involved can be examined as fixed 
effects, but no generalization to cultures per se can be 
made. How many observations is enough to provide a 
basis for making an inference about the population of 
cultures? It is not possible to set hard and fast rules 
for such matters, but researchers can rely on their 
general knowledge of statistics and inference. Aside 
from studies that rely on intensive repeated measures 
from restricted samples (e.g., single-case studies), 
most researchers would probably assume that 10 or 
so observations would be the minimum.

Aside from commonsense notions about what 
constitutes a reasonable basis for drawing inferences 
to a population, another way to tell whether MLM is 
not appropriate for a particular data set is to con-
sider how well the data can estimate random effects. 
Assuming that coefficients are theoretically random, 
if there is not enough information in a data set to 
estimate any random error terms, then there might 
not be enough observations to provide the informa-
tion needed to estimate random effects. For most 
psychologists, such problems will consist of an 
insufficient number of Level-2 observations (cul-
tures, classrooms, clinics, etc.). When deciding not 
to use MLM when using MLM is dictated by the 
logic of a data structure, researchers should note the 
following. The inability to estimate random error 
terms reliably can and should be used as a justifica-
tion only when the number of cases is small, for 
example, when the number of Level-2 units is small 
(certainly fewer than 10). Random error terms (par-
ticularly for slopes) may be difficult to estimate even 
when there are many observations at both levels of 
analysis, and in such cases, MLM would be 
appropriate.

If a researcher decides that MLM is not appropri-
ate for a nested data structure, there are reasonable 
alternatives. The critically important feature of the 
recommendations I provide for such alternatives is 
that they allow for the possibility that relationships 
among Level-1 measures vary across Level-2 units of 
analysis. Returning to our three culture example, 
one way of analyzing these data in a single level 
would be to conduct what is called a regression by 
groups analysis. A regression equation is estimated 
for each group (each culture in our example), and 
the similarity of these equations is compared with 
an F ratio. Alternatively, dummy or contrast codes 
representing the interaction of culture and various 
predictors could be entered into an OLS regression. 
More simply, correlations can be calculated for each 
culture and compared with a Fisher’s r-to-z trans-
form, and means could be compared with a one-way 
analysis of variance.

Although such procedures can provide signifi-
cance tests of differences between groups, and  
significance tests of within-group relationships, it  
is essential to recognize their limitations. Most 
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important, the inference of such analyses is limited 
to the specific groups being studied. Assume we 
have collected data from Spain, Greece, and the 
United States. A regression by groups analysis would 
allow us to conclude whether coefficients from the 
Spanish sample were different from coefficients from 
the Greek or U.S. samples, and so forth. We could 
not make any inferences beyond these samples, and 
we could not model the differences across the sam-
ples—country-level differences that might map onto 
the differences we found between the three groups. 
Explaining the differences between the cultures 
could not be done statistically because three cultures 
would not constitute a sufficient basis for making 
inferences about cultures in general.

SOME PRACTICAL MATTERS

Preparing Papers for Publication
Norms vary widely about the details of analyses that 
should be reported, and the following guidelines 
need to be considered in that light:

1. Structure of the data—The nesting of the data 
(what was nested in what) should be described 
explicitly. This description should include the 
numbers of observations at each Level of analy-
sis, and for lower levels of analysis (e.g., Level 1 
in a two-level model) some indication of the dis-
tribution of the number of Level-1 observations 
for Level-2 units (e.g., the SD).

2. Centering—The type of centering used for 
each predictor should be described explicitly. 
Coefficients (and the relationships they repre-
sent) cannot be understood without knowing 
how predictors were centered.

3. Error terms—The basis used to include or 
exclude error terms should be described explic-
itly. A clear justification should be provided 
if coefficients are fixed on other than statisti-
cal grounds. Nonetheless, extended discus-
sions of error structures are often unnecessary. 
Unless hypotheses explicitly concern or involve 
some aspects of the error structure, which may 
more likely be the case with longitudinal data, 
extended discussion may distract more than it 
clarifies.

4. Summary statistics—The mean and variance 
estimates provided by unconditional analyses are 
the basic descriptive statistics for MLM analyses. 
These should be provided for both dependent 
and independent measures to provide a context 
for readers to understand the results.

5. Model equations—At present, I think the equa-
tions representing the models that were run 
should be presented. Perhaps after more people 
become more familiar with MLM, this will not be 
necessary. Moreover, in keeping with Bryk and 
Raudenbush (1992), I recommend presenting the 
equations for each level of an analysis separately. 
This clarifies what was done, particularly for 
readers who not are modelers.

6. Statistics—I encourage authors to be lean and 
mean in terms of the statistics they describe in 
articles and chapters. For example, the signifi-
cance of the gamma (Level-2) coefficients that 
are typically the focus of hypotheses in two-level 
models are tested with an approximate t ratio. 
This t ratio is calculated by dividing an estimate 
of a fixed effect (gamma) by a standard error. 
This means that there is no reason to present the 
gamma, the t ratio, and the standard error. Any 
two will do. I recommend the gamma and the t 
ratio, with an accompanying p value.

7. Predicted values—Many MLM analysts recom-
mend interpreting results in terms of predicted 
values. For categorical predictors, estimated 
values can be calculated for different groups. 
For continuous predictors, coefficients can be 
estimated for units +/−1 SD. Keep in mind that 
the SD for a Level-1 measure is not the SD of that 
measure from a single-level analysis. The Level-1 
SD of a measure is the square root of the variance 
as estimated by an unconditional model. Finally, 
using predicted values can make real the implica-
tions of centering.

8. Indexes of model fits and sequential models—
Rarely do I see a justification for presenting 
indexes of model fits. The fixed effects are the 
focus of most multilevel hypotheses, and fit 
indexes include both the fixed and random 
components. Moreover, comparing models that 
have different fixed effects requires using full 
(vs. restricted) maximum likelihood estimators, 
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and full maximum likelihood estimators are not 
as accurate as restricted maximum likelihood 
estimators under many conditions. Sequential 
comparisons of models frequently provide little 
information above what is available from final 
models. When they provide additional insights, 
they are certainly valuable. When they do not, 
they distract more than they inform.

Authors should carefully consider just how rele-
vant certain aspects of an analysis are to the sub-
stantive questions at hand. Certainly, different 
disciplines may have different norms (with good 
reasons) regarding the details of different types of 
analyses, and authors will need to recognize the 
importance of presenting the types of details their 
readers require.

Software Options
The number of programs that can perform MLM has 
grown meaningfully over the past 10 to 15 years. 
Different programs provide the same results assum-
ing the same models—including, among other 
aspects, type of estimation algorithm—are specified. 
The computational algorithms underlying MLM 
analyses are well understood, and there is broad 
agreement about their application. MLM software 
falls into two broad categories: general-purpose pro-
grams that can do all sorts of analyses including 
MLM (e.g., SAS), and single purpose programs that 
can do only MLM (e.g., HLM [see Raudenbush, 
Bryk, & Congdon, 2004]; and MlwiN [see Rasbash, 
Charlton, Browne, Healy, & Cameron, 2005]).

For those who are unfamiliar with MLM (or with 
modeling covariances in general), I recommend 
starting with a single-purpose program such as 
HLM. This recommendation reflects the fact that 
setting up models and interpreting the output is 
generally more straightforward in single-purpose 
programs than in general-purpose programs. Single-
purpose programs were designed to do only MLM 
and so the user interface is tailored to MLM analy-
ses. HLM is particularly accessible in terms of model 
set-up and output. In all-purpose programs, the 
commands for and results of MLM analyses are just 
one of many possibilities, and so the user interface is 
not tailored for MLM.

As analysts and their questions become more 
sophisticated, they may want to consider using 
MLM modules within a general-purpose program 
such as SAS. For example, by combining PROC 
MIXED with other procedures, analysts can perform 
advanced analyses such as mixture models in which 
similarities among error structures are used as a 
basis for categorical analyses. Moreover, for analysts 
interested in error structures that are more complex 
than the standard model (i.e., covariances between 
all error terms are estimated), programs such as SAS 
provide more alternatives. Note that MLwiN, a single-
purpose program, also provides the opportunity to 
model some fairly sophisticated error structures.

When discussing software options with analysts, 
my primary concern is that they fully understand all 
the parts of the output of their programs. I have spo-
ken with reasonably experienced analysts who have 
misinterpreted or misunderstood sometimes critical 
parts of their outputs. Moreover, such confusion 
seems to be more common with general-purpose 
programs such as SAS than it is for single-purpose 
programs such as HLM. Because they involve multi-
ple levels of analysis, multilevel analyses are more 
complex than single-level analyses, and analysts are 
advised to proceed cautiously as they add sophisti-
cated options and to master basic techniques before 
proceeding to more advanced modeling options.

SUggESTED READINgS

I recommend the following for those who are inter-
ested in learning more about the hows and whys of 
MLM. For overviews, Raudenbush and Bryk (2002), 
which is the revision of the first edition by Bryk and 
Raudenbush (1992); Goldstein (2003); Hox (2002); 
Kreft and de Leeuw (1998); and Snijders and Bosker 
(1999) all provide good coverage of MLM, with 
Raudenbush and Bryk and Goldstein being perhaps 
being the most complete. Moreover, Raudenbush 
and Bryk was written to accompany the HLM soft-
ware, so readers can conduct analyses and read 
about the same analyses in the book. Those who are 
interested in using SAS to conduct MLM should 
start with Singer (1998), and those interested in 
more advanced aspects of random coefficient model-
ing per se should consult Littell, Milliken, Stroup, 
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and Wolfinger (1996). Moreover, web-based 
resources about MLM are constantly evolving and 
expanding. Any decent search engine should point 
you in the right direction.

In terms of applying MLM to various substantive 
areas, I have a written a series of articles and chap-
ters that were intended for social and personality 
psychologists (Nezlek, 2001, 2003, 2007a, 2007b, 
2008), and one that is intended for cross-cultural 
psychologists (Nezlek, 2010). Moreover, detailed, 
step-by-step descriptions of how to use MLM to ana-
lyze these types of data are presented in Nezlek 
(2011). Although the content of these articles over-
laps with each other and with the content of this 
chapter, each emphasizes different aspects or appli-
cations of MLM. A nice discussion of using MLM to 
analyze reaction time data is provided by Richter 
(2006), and although Richter discussed MLM in 
terms of reading comprehension studies, the exten-
sion to other substantive areas that rely on reaction 
times is fairly straightforward. Clinicians (and oth-
ers) might want to consult Affleck, Zautra, Tennen, 
and Armeli (1999) for a discussion of the impor-
tance of separating relationships at different levels of 
analysis.
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